## **User Manual**

K-BUS<sup>®</sup> KNX GPS Weather Station Pro\_V1.1 CSWSP-07/00.1.00



**KNX/EIB Home and Building Control System** 

## **Attentions**

1.Please keep devices away from strong magnetic field, high temperature, wet environment;







2.Do not fall the device to the ground or make them get hard impact;



3.Do not use wet cloth or volatile reagent to wipe the device;



4.Do not disassemble the devices.

## **Contents**

| Chapter 1 Summary                                        |    |
|----------------------------------------------------------|----|
| Chapter 2 Technical date                                 | 3  |
| Chapter 3 Dimension and structural diagram               | 3  |
| 3.1 Dimension diagram                                    | 4  |
| 3.2 Structural diagram                                   | 5  |
| 3.3 Position of the sensors                              | 6  |
| 3.4 Installation instructions                            | 7  |
| Chapter 4 Parameter setting description in the ETS       | 13 |
| 4.1 Parameter window "General settings"                  | 13 |
| 4.2 Parameter window "GPS settings"                      | 14 |
| 4.3 Parameter window "Location"                          | 17 |
| 4.4 Parameter window "Rain"                              | 23 |
| 4.5 Parameter window "Temperature"                       | 26 |
| 4.6 Parameter window "Temperature threshold value"       | 31 |
| 4.6.1 Parameter window "Threshold value 1/2/3/4"         | 32 |
| 4.7 Parameter window "Frost alarm"                       | 39 |
| 4.8 Parameter window "Humidity measured value"           | 42 |
| 4.9 Parameter window "Humidity threshold value"          | 45 |
| 4.9.1 Parameter window "Threshold value 1/2/3/4"         | 46 |
| 4.10 Parameter window "Dew point measured value"         | 48 |
| 4.10.1 Parameter window "Cooling medium temp.monitoring" | 50 |
| 4.11 Parameter window "Absolute humidity"                | 53 |
| 4.12 Parameter window "Comfort field"                    | 55 |
| 4.13 Parameter window "Brightness"                       | 58 |
| 4.14 Parameter window "Brightness threshold values"      | 59 |
| 4.14.1 Parameter window "Threshold value 1//8"           | 60 |
| 4.15 Parameter window "Brightness, TV twilight sensor"   | 62 |
| 4.15.1 Parameter window "Threshold value 1/2/3/4"        | 63 |
| 4.16 Parameter window "Night"                            | 65 |

| 4.17 Parameter wii    | ndow "Sun position"                                | 68  |
|-----------------------|----------------------------------------------------|-----|
| 4.18 Parameter wii    | ndow "Wind measurement"                            | 70  |
| 4.19 Parameter wii    | ndow "Wind threshold value"                        | 74  |
| 4.19.1 Paramete       | er window "Threshold value 1/2/3/4"                | 75  |
| 4.20 Parameter wii    | ndow "Wind direction"                              | 77  |
| 4.21 Parameter wii    | ndow "Wind direction ranges"                       | 84  |
| 4.21.1 Paramete       | er window "Range 1/2/3/4"                          | 85  |
| 4.22 Parameter wii    | ndow "Pressure measured value"                     | 89  |
| 4.23 Parameter wii    | ndow "Pressure threshold values"                   | 94  |
| 4.23.1 Paramete       | er window "Threshold value 1/2/3/4"                | 95  |
| 4.24 Parameter wii    | ndow "Summer compensation"                         | 97  |
| 4.25 Parameter wii    | ndow "Facades"                                     | 102 |
| 4.25.1 Paramete       | er window "Facade 1//12: Function, safety"         | 118 |
| 4.25.1.               | 1 Classifying the facades for the control unit     | 131 |
| 4.25.1.               | 2 Orientation and inclination of the Facade        | 133 |
| 4.25.1.               | .3 Shadow edge tracking and slat tracking          | 135 |
| 4.25.1.               | 4 Slat type and determination of width and spacing | 138 |
| 4.25.1.               | .5 Slat position for horizontal slats              | 139 |
| 4.25.1.               | .6 Slat position for vertical slats                | 141 |
| 4.25.1.               | 7 Simulation                                       | 143 |
| 4.25.1.               | .8 Status output                                   | 145 |
| 4.25.2 Paramete       | er window "Facade 1//12: Automation"               | 147 |
| 4.26 Parameter wii    | ndow "Computer"                                    | 181 |
| 4.26.1 Paramete       | er window "Computer 1//8"                          | 182 |
| 4.27 Parameter wii    | ndow "Weekly time switch"                          | 188 |
| 4.27.1 Paramete       | er window "Period 1//24"                           | 189 |
| 4.28 Parameter wir    | ndow "Calendar time switch"                        | 193 |
| 4.28.1 Paramete       | er window "Period 1/2/3/4"                         | 194 |
| 4.29 Parameter wii    | ndow "Logic"                                       | 197 |
| 4.29.1 Paramete       | er window "AND/OR logic 1//8"                      | 200 |
| Chapter 5 Description | n of communication object                          | 206 |

| 5.1 Communication object of "General settings"                |  |
|---------------------------------------------------------------|--|
| 5.2 Communication object of "GPS settings"                    |  |
| 5.3 Communication object of "Location"                        |  |
| 5.4 Communication object of "Rain"209                         |  |
| 5.5 Communication object of "Temperature"                     |  |
| 5.6 Communication object of "Temperature threshold value"212  |  |
| 5.7 Communication object of "Frost alarm"214                  |  |
| 5.8 Communication object of "Humidity measured value"215      |  |
| 5.9 Communication object of "Humidity threshold value"        |  |
| 5.10 Communication object of "Dew point measured value"219    |  |
| 5.11 Communication object of "Absolute humidity"221           |  |
| 5.12 Communication object of "Comfort field"222               |  |
| 5.13 Communication object of "Brightness"                     |  |
| 5.14 Communication object of "Brightness threshold values"    |  |
| 5.15 Communication object of "Brightness, TV twilight sensor" |  |
| 5.16 Communication object of "Night"                          |  |
| 5.17 Communication object of "Sun position"                   |  |
| 5.18 Communication object of "Wind measurement"               |  |
| 5.19 Communication object of "Wind threshold values"          |  |
| 5.20 Communication object of "Wind direction"                 |  |
| 5.21 Communication object of "Wind direction ranges"          |  |
| 5.22 Communication object of "Pressure measured value"        |  |
| 5.23 Communication object of "Pressure threshold value"       |  |
| 5.24 Communication object of "Summer compensation"            |  |
| 5.25 Communication object of "Facades"                        |  |
| 5.26 Communication object of "Computer"                       |  |
| 5.27 Communication object of "Week time switch"               |  |
| 5.28 Communication object of "Calendar time switch"           |  |
| 5.29 Communication object of "Logic"                          |  |



## **Chapter 1 Summary**

The KNX GPS Weather Station Pro for the KNX building bus system measures temperature, wind speed, wind direction, brightness air humidity and air pressure. It recognizes precipitation and receives the GPS signal for time and location. In addition, using location coordinates and the time, it calculates the exact position of the sun (azimuth and elevation).

All values can be used for the control of limit dependent switching outputs. States can be linked via AND logic gates and OR logic gates. Multi-function modules change input data as required by means of calculations, querying a condition, or converting the data point type.

The integrated shade control system allows intelligent sun protection control of up to 12 facades. Functions are summarized as followed:

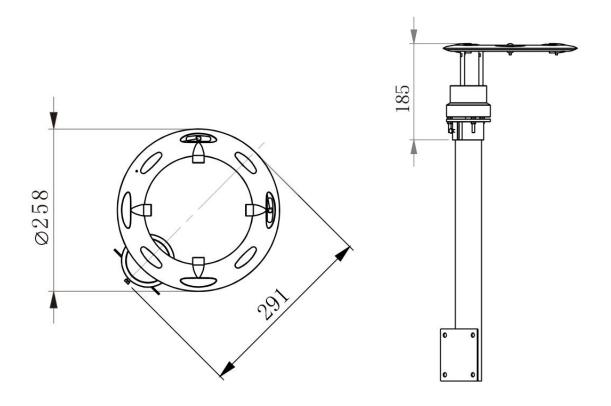
- Brightness measurement (current light strength). Measurement with 5 separate sensors, output of the current highest value (one maximum value). Separate limit values for night.
- GPS receiver, outputting the current time and location coordinates. The KNX GPS Weather Station Pro also computes the position of the sun (azimuth and elevation).
- Shade control for up to 12 facades with slat tracking and shadow edge tracking.
- Wind measurement: Measurement of wind strength and wind direction (0°- 360°) by ultrasound.
- Precipitation detection: The sensor surface is heated, so that only drops and flakes are recognised as precipitation, but not mist or dew. When the rain or snow stops, the sensor is soon dry again and the precipitation warning ends.
- Temperature measurement. Calculation of the felt temperature (considering wind strength and air humidity).
- Frost protection for shading systems.
- Air humidity measurement (relative, absolute).
- Bus message, whether the values of temperature and humidity are within the comfort field (DIN 1946). Calculation of the dew point.
- Air pressure measurement.



- Weekly and calendar time switch: All time switching outputs can be used as communication objects. The weekly time switch has 24 periods. Each period can be configured either as an output or as an input. If the period is an output, then the switching time is set per parameter or per communication object. The calendar time switch has 4 periods. Two on/off switching operations, which are executed daily, can be set for each period.
- Switching outputs for all measured and computed values. Threshold values can be adjusted per parameter or via communication objects.
- 8 AND and 8 OR logic gates, each with 4 inputs. All switching events as well as 16 logic inputs (in the form of communications objects) can be used as inputs for the logic gates. The output of each gate can be configured optionally as 1-bit or 2 x 8-bit.
- 8 multi-function modules (computers) for changing the input data by calculations, by querying a condition or by converting the data point type.
- Summer compensation for cooling systems. A characteristic curve matches the target temperature in the room to the external temperature and sets the minimum and maximum target temperature values.



## **Chapter 2 Technical date**


| General          | Installation                           | Pole mounting                       |
|------------------|----------------------------------------|-------------------------------------|
|                  | Degree of protection                   | IP44                                |
|                  | Dimensions(W x H x D)                  | 258*185*291mm                       |
|                  | Total weight                           | ≈600g                               |
|                  | Ambient temperature                    | -25+50°C                            |
|                  | Storage temperature                    | -30+70℃                             |
| KNX bus          | Bus voltage                            | 21-30V DC, via the KNX bus          |
|                  | Bus current                            | ≤18mA/24V DC, ≤15mA/30V DC          |
|                  | Bus consumption                        | ≤450mW                              |
|                  | Duration after bus voltage restoration | ≈8s                                 |
|                  | until data is received                 |                                     |
|                  | Medium                                 | TP1-256                             |
|                  | Configuration mode                     | S-Mode                              |
| Auxiliary supply | Voltage                                | 21.6~26.4V DC                       |
|                  | Current [at]                           | ≤250mA/24V DC [t > 7.5°C]           |
|                  |                                        | $\leq$ 1.6A/24V DC [t $\leq$ 7.5°C] |
|                  | consumption [at]                       | ≤6 W [t > 7.5°C]                    |
|                  |                                        | ≤40 W [t≤ 7.5°C]                    |
| Sensors          | Measurement range temperature          | -25+50℃                             |
|                  | Measurement range air humidity (rH)    | 0%100%                              |
|                  | Measurement range wind speed           | 035 m/s                             |
|                  | Measurement range wind direction [from | 0360° [v>0.5m/s]                    |
|                  | wind speed]                            |                                     |
|                  | Measurement range pressure             | 300 mbar1100 mbar                   |
|                  | Measurement range brightness           | 0 Lux150000 Lux                     |
|                  |                                        |                                     |

| Application |                                 | Maximum of            | Maximum number of | Maximum number  |
|-------------|---------------------------------|-----------------------|-------------------|-----------------|
|             |                                 | communication objects | group addresses   | of associations |
|             | KNX GPS Weather Station Pro/1.0 | 1414                  | 2000              | 2000            |

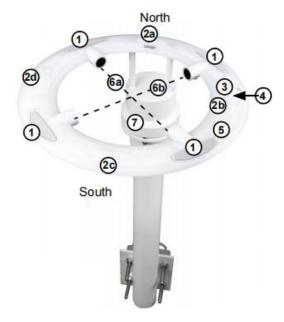


## **Chapter 3 Dimension and structural diagram**

## 3.1 Dimension diagram






## 3.2 Structural diagram



- 1 Ring with sensors
- 2 Ring base connector
- 3 Base with temperature and humidity sensor, control electronics and bus connection socket
- 4 Threaded rods with self-locking nuts for setting the angle
- 5 Base holder
- 6 Mast extension
- 7 Mast holder with fastening brackets
- 8 PRG magnetic switch (can be triggered with the enclosed magnet)
- 9 Programming LED



### 3.3 Position of the sensors



- 1 Precipitation sensors (4 surfaces with conductor tracks)
- 2 Brightness sensors under plastic domes, directed to wards:
- a North b East c South d West and up (sky)
- 3 Pressure sensor
- 4 Magnet PRG button (magnetic switch) for addressing the device
- 5 GPS module
- 6 Wind sensor with ultrasonic measuring sections
- a North-east/South-west
- b South-east/North-west
- 7 Temperature and humidity sensor in the base



### 3.4 Installation instructions



### **CAUTION!**

#### Live voltage!

There are unprotected live electric components inside.



Installation and commissioning may only be handled by an electrician.

- Only operate devices if they are free from damage.
- Comply with country-specific standards, directives, specifications and provisions for electrical installation.
- Switch off voltage to the system during installation.
- Place out of reach of persons.
- Select an installation position on the building where the sensors can measure wind, rain and sunshine without hindrance.
- Do not install below construction parts from which water can still drip onto the rain sensor even after it has stopped raining or snowing.
- Avoid installation locations that are heated or cooled by sources of interference (solar radiation on building structure etc.)
- Do not place near magnetic fields, transmitters and interference fields from electrical consumers (e.g. fluorescent lamps, neon signs, switching power supplies, etc.) as this may interfere with GPS reception.

The device may only be operated as a fixed-site installation, when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Improper use, modifications to the device or failure to observe this manual will void any warranty and guarantee claims.



The networks connected to the device (KNX and supply voltage) must be entirely within the same earthing system.

Fig.1:



Fig.2:

Leave a distance of at least 60 cm below, to the sides and to the front from other elements (building structure, construction parts, etc.).

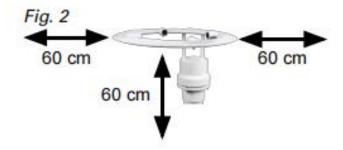
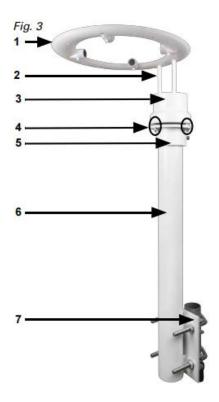




Fig.3: Device setup



- 1 Ring with sensors
- 2 Ring base connector
- 3 Base with temperature and humidity sensor, control electronics and bus connection socket
- 4 Threaded rods with self-locking nuts for setting the angle
- 5 Base holder
- 6 Mast extension
- 7 Mast holder with fastening brackets



### ATTENTION!

Sensitive sensors!

- Only hold the device by the base.
- Do not mechanically load (bend) the ring and connections. Caution Lever effect!



### Fig.4+5

The connection to the KNX bus and the supply voltage is via the bushing in the base. To do this, screw the base by the base holder. Screw the M8 plug connector on the connection cable to the connection socket (A). The cable can be passed through the mast extension (Fig. 5a) or out between base and base holder (Fig. 5b). Fasten the device with the mast extension to a vertical mast or a horizontal railing.

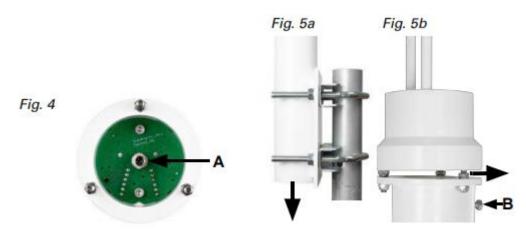



Fig.5b-7

Place the weather station with the base and the base holder on the mast extension.

Align the device along the north south axis. The base (C) must be in the north, the ring must face south.

For the next steps, use the enclosed fork wrenches and the circular level.

Use the screw to fix the weather station in the base holder (B).

Place the ring horizontally by adjusting the angle using the 3 threaded rods and the 3 nuts between the base and base holder. Then fix the base with the 3 nuts, which are located on the bottom end of the threaded rods.

Wind can only be recorded correctly if the ring is horizontal.



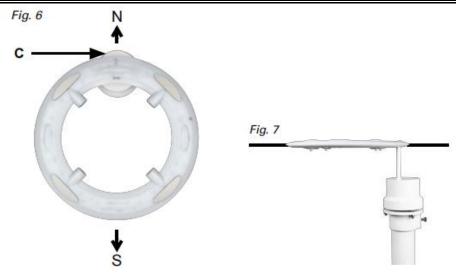



Fig.8 Connection to KNX bus

Use the supplied junction box and terminals to connect the loose end of the connection cable to the KNX bus and the mains unit (supply voltage).

| KNX     | Supply voltage |
|---------|----------------|
| + Red   | + Yellow       |
| - Black | - White        |

Set the voltage to 24 V DC b turning the adjusting screw on the mains unit (D) fully to the left. Over voltage protection installed on site is recommended.



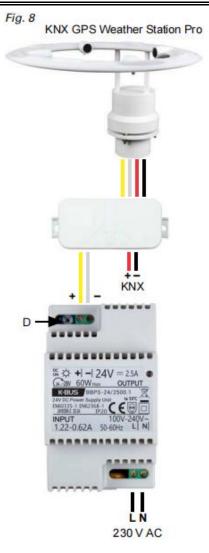



Fig.9 Addressing the equipment

8 PRG magnetic switch (can be triggered with the enclosed magnet)

9 Programming LED





## **Chapter 4 Parameter setting description in the ETS**

### 4.1 Parameter window "General settings"

| Transmission delays after reset/bus restoration for: |                         |          |
|------------------------------------------------------|-------------------------|----------|
| Measured values                                      | 5                       | <b>‡</b> |
| Threshold values and switching outputs               | 5                       | ÷        |
| Façade objects                                       | 5                       | <b>‡</b> |
| Computer objects                                     | 5                       | <b>‡</b> |
| Time switch objects                                  | 5                       | <b>‡</b> |
| Logic objects                                        | 5                       | ÷        |
| Maximum telegram quota                               | 10 Telegrams per second | •        |

Fig.4.1 Parameter window "General settings"

### Transmission delays after reset/bus restoration for:

```
Parameter "Measured values
Parameter: "Threshold value and switching outputs
Parameter: "Facade object
Parameter: "Computer object"
Parameter "Time switch object"
Parameter "Logic outputs"
Parameter: "Maximum telegram quota
```

Set basic characteristics of data transfer. A different transmission delay prevents an overload of the bus shortly after the reset.

Options: 5sec/.../2h



Options: 1 telegram per second/.../50 telegram per second

### 4.2 Parameter window "GPS settings"

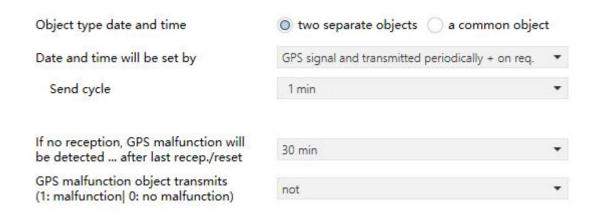



Fig.4.2 Parameter window "GPS settings"

### Parameter: "Object type date and time"

Set whether the time and date are to be sent as separate objects or as one common object.

Options:

#### two separate objects

### a common object

If time and date are set by two objects, then only a maximum of 10 seconds may elapse between receiving the date and receiving the time Furthermore, a change of date may not occur between receiving both objects. The objects must be received by the device on the same day.

## Parameter: "Date and time will be set by"

Specify whether the time and date are to be set by the GPS signal or objects.

If time and date are set by the GPS-Signal, the data is available as soon as a valid GPS signal is received.

If time and date are set by the GPS-Signal, the data is available as soon as a valid GPS signal is received.



Options:

GPS signal and not transmitted

GPS signal and sent transmitted periodically

GPS signal and transmitted on request

GPS signal and transmitted periodically + on req.

Object(s) and not transmitted

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "Object(s) and not transmitted" and "GPS signal and transmitted on request and periodically".

When sending periodically, the date and time are sent on the bus in a fixed cycle that can be set here.

Note: The device has an integrated real-time clock. Therefore, time keeps on running internally and can be sent to the bus, even when no GPS coverage is available or no time object has been received for some time. The internal clock can show a time drift of up to ±6 seconds per day.

Options:

5sec

10s

...

1.5h

2h

Parameter. "If there is no reception, GPS malfunction will be detected ... after last recep./reset"

After the bus voltage is applied or restored, it can take up to 10 minutes until the GPS signal is received, sometimes even longer at locations with poor GPS reception. Therefore, a longer duration should be chosen in such cases.

Options:

20min



30min

•••

1.5h

2h

Parameter: "GPS malfunction object transmits(1=Malfunction | 0=no Malfunction)"

The information of the GPS fault can be used by other bus participants for monitoring. The transmission behaviour can be set here to match this.

### Options:

not

on change

on change to 1

on change to 0

on change and periodically

on change to 1 and periodically

on change to 0 and periodically

## ---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "on change and periodically ", "on change to 1 and periodically " and "on change to 0 and periodically".

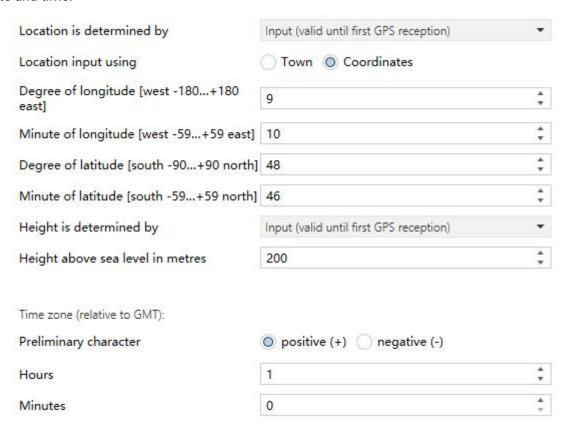
When sending periodically, the GPS fault is sent on the bus in a fixed cycle that can be set here.

### Options:

5sec

10s

•••


1.5h

2h



### 4.3 Parameter window "Location"

The location data is required in order to be able to calculate the position of the sun with the help of the date and time.





## KNX/EIB KNX GPS Weather Station Pro

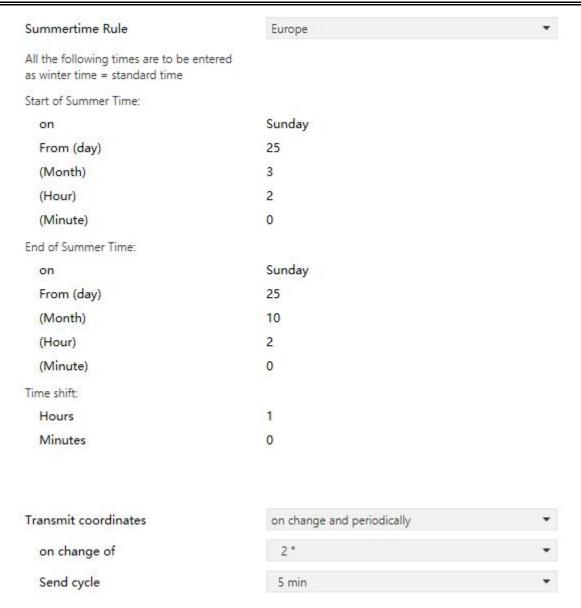



Fig.4.3 Parameter window "Location"

## Parameter "Location is determined by"

The location is received via GPS or entered manually (selection of the nearest town or by entering coordinates).

Also when using the GPS signal coordinates can be entered manually for the initial commissioning. This data is used as long as no GPS reception exists. For this you select the option "Input (only valid until the first GPS reception)".



options: Input/Input (valid until first GPS reception)/GPS reception

---Parameter "Location input using"

This parameter is visible when previous parameter is selected "input" or "Input (valid until first GPS reception)".

This parameter is used to set location input using town or coordinates.

options:

**Town** 

Coordinates

Parameters as follow are visible when "Location input using" is selected "Town".

——Parameter "Country"

---Parameter "Town"

This parameter is used to set the country and town.

options: Belgium/.../USA

options: Antwerp/.../Oostende

Parameters as follow are visible when "Location input using" is selected "Coordinates".

---Parameter "Degree of longitude [west -180···+180 east]"

---Parameter "Minute of longitude [west -59···+59 east]"

——Parameter "Degree of latitude [south -90···+90 north]"

——Parameter "Minute of latitude [south -59···+59 north]"

This parameter is used to set the latitude and longitude position.

options: -180...180

options: -59...59

options: -90...90

options: -59...59



- ---Parameter "Height is determined by"
- ---Parameter "Height above sea level in metres"

The location-height above sea level is used to calculate the normal air pressure (see chapter 4.22 pressure measure threshold).

The height is received per GPS or entered manually.

When using the GPS signal a height can be entered manually for the initial commissioning. This data is used as long as no GPS reception exists. For this you select the option "Input (only valid until the first GPS reception)".

options: Input/Input (valid until first GPS reception/)/GPS reception

options: -1000...10000

### Time zone(relative to GMT):

```
Parameter "Preliminary character"

Parameter "Hours"

Parameter "Minutes"

All the following times are to be entered as winter time-standard time

Start/End of summer time

Parameter "On"

Parameter "From (day)"

Parameter "(Month)"

Parameter "(Minute)"

Parameter "(Hours)"
```



In order to be able to output the local time, the time zone (difference to world time (Coordinated Universal Time)) and the summer time rules must be defined. Specify the hours and minutes after winter time (standard time).

Options:Positive(+)/Negative(-)

Options: 0...13

Options: 0...59

Options: Europe/USA/User-defined/None

Options: Monday/.../Sunday/Date

Options: 1...31

Options: 1...12

Options: 0...23

Options: 0...59

Options: -12...12

Options: 0...59

### arameter "Transmit coordinates"

The standard coordinates can be transmitted from the device to the bus and thus be used in other applications, no matter whether they have been received via GPS or specified manually.

Options:

Not

Periodically

On change

On change and periodically

——Parameter "Send cycle"

This parameter is visible when previous parameter is selected "Periodically" and "On change and periodically".



## KNX/EIB KNX GPS Weather Station Pro

When sending periodically, the position coordinates are sent on the bus in a fixed cycle that can be set here.

| Options:    |                |
|-------------|----------------|
|             | 5sec           |
|             | 10s            |
|             |                |
|             | 1.5h           |
|             | 2h             |
| ——Parameter | "on change of" |

This parameter is visible when previous parameter is selected "On change" and "On change and periodically".

When sending on change, the location coordinates are sent on the bus as soon as they change by the value set here.

Options:

0.5°

1°

...

10°



### 4.4 Parameter window "Rain"

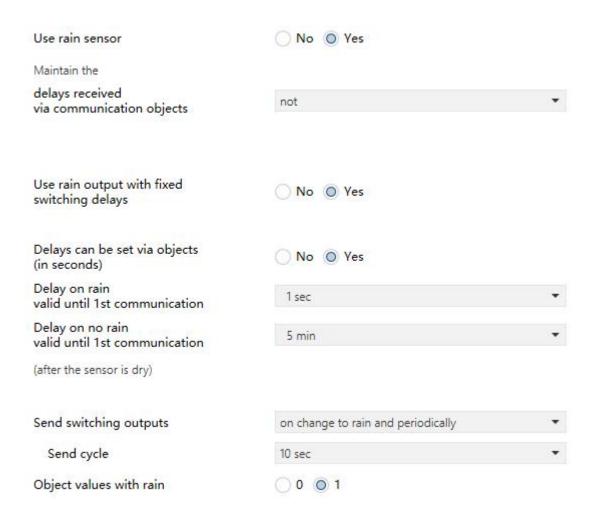



Fig.4.4 Parameter window "Rain"

# Parameter "Use rain sensor"

This parameter is used to set whether use rain sensor.

Options:

No

Yes

Parameters as follow are visible when "use rain sensor" is selected "yes".

Parameter "delays received via communication objects"



Set, in which cases delay times received are to be kept per object. The parameter is only taken into consideration if the setting by object is activated further down.

Options:

Not

After power supply restoration

After power supply restoration and programming

Note: The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Parameter: "Use rain output with fixed switching delays"

Select whether the special rain output is to be used with fixed switching delay. This switching output has no delay on rain recognition and 5 minutes delay after it is dry again.

Options:

No

Yes

"Delays can be set via objects(in seconds)

"Delay on rain valid until 1st communication"

"Delay on no rain valid until 1st communication

Set the delay times. If the delays are defined using objects, then the times set here are only valid up to the first call.

Options: none/5 sec/10s/.../1.5h/2h

Options: 5 min/10s/.../1.5h/2h

(after the sensor is dry)

Parameter: "Switching output sends"

Here you set when the switching output is to be sent to the bus.

Options:



on change

on change to rain

on change to no rain

on change and periodically

on change to rain and periodically

on change to no rain and periodically

### ---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "on change and periodically ", "on change to 1 and periodically " and "on change to 0 and periodically".

When sending periodically, the rain switching output is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

•••

1.5h

2h

Parameter: "Object values with rain"

Define the object value for the rain.

Options:

0

1



### 4.5 Parameter window "Temperature"

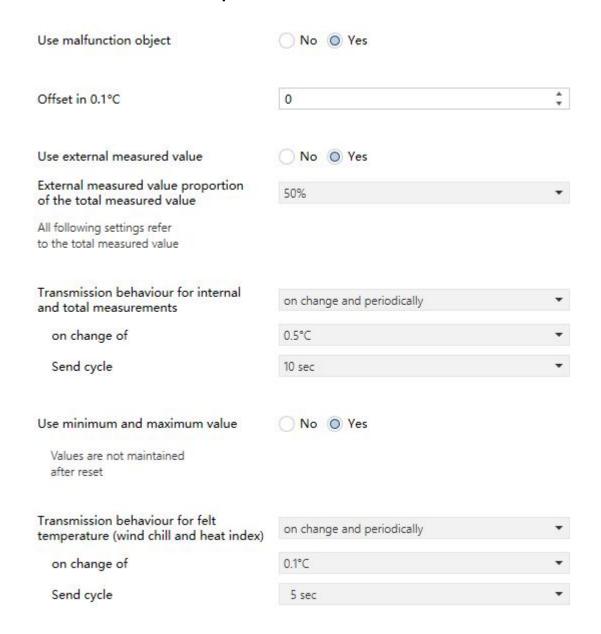



Fig.4.5 Parameter window "Temperature"

## Parameter "Use malfunction object"

First of all set whether the temperature sensor malfunction object is to be used and correct.

Options:

No



Yes

### Parameter "Offset in 0.1°C"

The output temperature value can be corrected here by an offset value if required. In this way, deviations caused by sources of interference can be compensated for, e.g. dark surfaces that heat up.

Options: -50...50

### Parameter: "Use external measured value"

This parameter is used to set whether use external measured value.

Options:

No

Yes

### ---Parameter "External measured value proportion of the total measured value"

This parameter is visible when previous parameter is selected "yes".

This parameter is used to set the external measured value proportion of the total measured value.

Options:

5%

10%

...

95%

100%

### All following settings refer to the total measured value

### Parameter \*Transmission behaviour for internal and total measurements.

This parameter is used to set the transmission behavior for the internal and total measurements.

Options:

Not

Periodically



### On change

### On change and periodically

### ---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically" .

When sending periodically, the temperature value is sent on the bus in a fixed cycle that can be set here.

### Options:

5sec

10s

•••

1.5h

2h

### ---Parameter "on change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically" .

When sending on change, the temperature value is sent on the bus as soon as it changes by the value set here.

### Options:

0.5°C

0.2°C

...

2.0°C

5.0°C

| _   |                    | RIAZER RIAZER SWeather Station 110                                                     |
|-----|--------------------|----------------------------------------------------------------------------------------|
| Pal | ameter "Use min    | imum and maximum values"                                                               |
|     | Select whether th  | ne minimum and maximum value should be used.                                           |
|     | Options:           |                                                                                        |
|     |                    | No                                                                                     |
|     |                    | Yes                                                                                    |
| Val | ues are not mainta | ained after reset                                                                      |
|     |                    | Yes                                                                                    |
| Pai | rameter "Transmi   | ssion behaviour for felt temperature (wind chill and heat index)?                      |
|     | Define the transn  | nission behavior for the felt temperature.                                             |
|     | Options:           |                                                                                        |
|     |                    | Not                                                                                    |
|     |                    | Periodically                                                                           |
|     |                    | On change                                                                              |
|     |                    | On change and periodically                                                             |
|     | ——Parameter "      | Send cycle"                                                                            |
|     | This parameter is  | s visible when previous parameter is selected "periodically" and "on change and        |
| per | iodically" .       |                                                                                        |
|     | When sending pe    | eriodically, the temperature value is sent on the bus in a fixed cycle that can be set |
| her | e.                 |                                                                                        |
|     | Options:           |                                                                                        |
|     |                    | 5sec                                                                                   |
|     |                    | 10s                                                                                    |
|     |                    | <b></b>                                                                                |
|     |                    | 1.5h                                                                                   |

2h



### ---Parameter "on change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically" .

When sending on change, the temperature value is sent on the bus as soon as it changes by the value set here.

Options:

0.5°C

0.2°C

•••

2.0°C

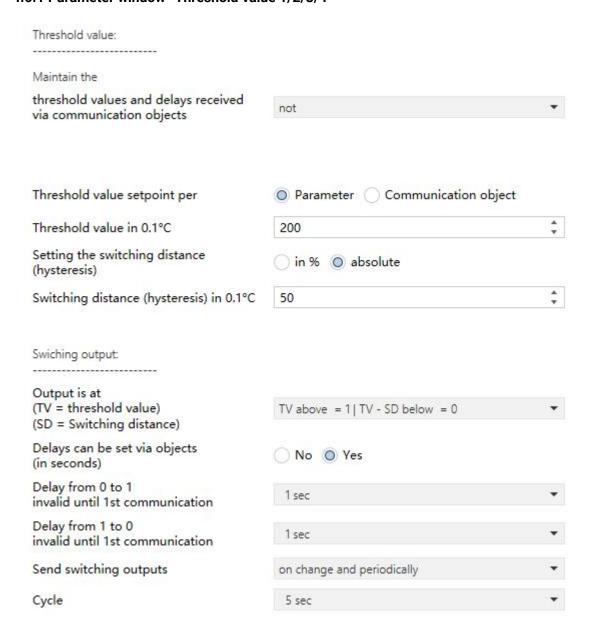
5.0°C

## 4.6 Parameter window "Temperature threshold value"

| Use threshold value 1 | No Yes   |
|-----------------------|----------|
| Use threshold value 2 | No Yes   |
| Use threshold value 3 | No Yes   |
| Use threshold value 4 | O No Yes |

Fig.4.6 Parameter window "Temperature threshold value"

Parameter "Use threshold value 1/2/3/4"


This parameter is used to set whether use temperature threshold value.

Options:

No

Yes

#### 4.6.1 Parameter window "Threshold value 1/2/3/4"





| Block:                                                  |                                                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------------|
| Use block of the switching ouput                        | ○ No ○ Yes                                                                         |
| Evaluation of the blocking object                       | if value 1: block   if value 0: release<br>if value 0: block   if value 1: release |
| Value of the blocking object before 1. communication    | ○ 0                                                                                |
| Action when locking                                     | Send 0 ▼                                                                           |
| Action when releasing<br>(with 2 seconds release delay) | Status object/s send/s                                                             |

Fig.4.6.1 Parameter window "Temperature threshold value 1/2/3/4"

#### Threshold value:

#### Maintain the

Parameter "Threshold value and delay received via communication objects"

Set, in which cases threshold values and delay times received are to be kept per object. The parameter is only taken into consideration if the specification/ setting by object is activated further down.

Options:

not

After power supply restoration

After power supply restoration and programming

Note: The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Parameter "Threshold value setpoint per"

Select whether the threshold value is to be specified per parameter or via a communication object.

Options:

**Parameter** 

**Communication object** 



#### ——Parameter "Threshold value in 0.1°C"

The parameter is visible when previous parameter is selected "parameter".

When the threshold value per parameter is specified, then the value is set.

Options: -300...800

Parameter "Setting the switching distance (hysteresis)

Parameter: "Switching distance (hysteresis) in %

With both of the methods for specifying the threshold values the switching distance (hysteresis) is set.

The switching distance prevents the switching output of the threshold value from changing too often in the event of temperature fluctuations. When the temperature drops, the switching output does not react until the switching distance falls below the threshold value. When the temperature rises, the switching output only reacts when the switching distance falls below the threshold value.

Options: In %/absolute

Options: 0...50/0...1100

These parameter is visible when "threshold value setpoint per" is selected "communication object".

---Parameter "Start threshold value in 0.1°C valid until 1.communication"

If the threshold value is set by a communication object, during the initial commissioning a threshold value must be specified which is valid until the 1st communication of a new threshold value. With weather stations that have already been taken into service, the last threshold value communicated is used.

From the 1st communication, the threshold value corresponds to the value of the communication object and is not multiplied by the factor 0.1.

Once a threshold value is set via parameter or communication object, the last set threshold value remains until a new threshold value is transmitted by a communication object.



The last threshold values set by communications objects are saved in the device, so that they are retained during a power outage and are available once again when power is restored.

| Options: -300800                                                                       |
|----------------------------------------------------------------------------------------|
| ——Parameter "Object value limit (min) in 0.1°C"                                        |
| ——Parameter "Object value limit (max) in 0.1°C"                                        |
| This parameter is used to set the object value limit.                                  |
| Options: -300800                                                                       |
| ——Parameter "Type of threshold change"                                                 |
| This parameter is used to set the type of change to the threshold value .              |
| Options:                                                                               |
| Absolute value                                                                         |
| Increment/decrement                                                                    |
| ——Parameter "Step size"                                                                |
| This parameters are visible when previous parameter is selected "Increment/decrement". |
| This parameter is used to set the set the increment/decrement step size                |
| Options:                                                                               |
| 0.1°C                                                                                  |
| 0.2°C                                                                                  |
|                                                                                        |
| 4°C                                                                                    |
| 5°C                                                                                    |

#### **Switching output:**

Parameter: "Output is at (TV=threshold value)(SD=Switching distance))"

Define which value the output transmits if the threshold value is exceeded or undercut.

#### Options:

TV above = 1 | TV - SD below = 0

TV above = 0 | TV - SD below = 1

TV below = 1 | TV - SD above = 0

TV below = 0 | TV - SD above = 1

Parameter: "Delays can be set via objects (in seconds)

This parameter is used to set whether delays can be set via objects.

Options:

No

Yes

---Parameter "Switch delay from 0 to 1"

---Parameter "Switch delay from 1 to 0"

These parameters are visible when previous parameter is selected "no".

This parameter is used to set the switch delay from 0 to 1/1 to 0.

Options: none/5 sec/10s/.../1.5h/2h

Options: none/5 sec/10s/.../1.5h/2h

——Parameter "Delay from 0 to 1 invalid until 1st communication"

——Parameter "Delay from 1 to 0 invalid until 1st communication"

These parameters are visible when previous parameter is selected "yes".

This parameter is used to set the delay from 0 to 1/1 to 0 invalid until 1<sup>st</sup> communication.

Options: none/5 sec/10s/.../1.5h/2h

Options: none/5 sec/10s/.../1.5h/2h

Parameter "Switching output sends"

This parameter is used to set in which cases the switch output transmits.

Options:

on change

on change to 1

on change to 0

on change and periodically

on change to 1 and periodically

on change to 0 and periodically

——Parameter "Send cycle"

This parameter is visible when previous parameter is selected "on change and periodically ", "on change to 1 and periodically " and "on change to 0 and periodically".

When sending periodically, the temperature threshold value switching output is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

•••

1.5h

2h

#### **Blocking:**

Parameter "Use block of the switching output"

With the help of the "Blocking" input object, the switching output can be blocked, e.g. by a manual command (push button).

Options:

No

Yes

Parameters as follow are visible when "Use block of the switching output" is selected "yes".

Parameter: "Evaluation of the blocking object"

This parameter is used to set what a 1 or 0 at the block entry means.

Options:

If value 1:block | if value 0:release

If value 0:block | if value 1:release

Parameter: "Value of the blocking object before 1. communication"

An object value up to the 1st communication is specified here.

Options:

0

1

Parameter "Action when locking"

Parameter: "Action when releasing:(with 2 seconds release delay)"

The behaviour of the switching output during locking can be set.

Options: do not send telegram/Send 0/Send 1

Options: dependent on the value of the parameter "Switching output sends"



#### 4.7 Parameter window "Frost alarm"

| Use frost alarm                                            | ○ No ○ Yes                 |          |
|------------------------------------------------------------|----------------------------|----------|
| Start frost alarm when                                     |                            |          |
| the outdoor temperature drops<br>below (in 0.1°C)          | 20                         | <b>‡</b> |
| During or until (in hours) after the end of precipitation. | 5                          | <b>‡</b> |
| End frost alarm when                                       |                            |          |
| an outdoor temperature of (in 0.1 °C)                      | 50                         | <b>‡</b> |
| is exceeded (in hours).                                    | 5                          | *        |
| Transmission behaviour                                     | on change and periodically | •        |
| Send cycle                                                 | 1 min                      | •        |
| Object value with frost                                    | 0 0 1                      |          |

Fig.4.7 Parameter window "Frost alarm"

Parameter "Use frost alarm"

This parameter is used to set whether use frost alarm.

Options:

No

Yes

Parameters as follow are visible when "Use frost alarm" is selected "yes".

#### Start frost alarm when/End frost alarm when

Parameter "the outdoor temperature drops below(in 0.1.-C)"

Parameter "During or until (in hours) after the end of precipitation"

Parameter "an outdoor temperature of (in 0.1°C)"



'arameter: "is exceeded (in hours)

Set which conditions are valid for the frost alarm. The frost alarm is active in cold outdoor temperatures in combination with precipitation.

Options: -50...40

Options: 1...10

Options: 30...1000

Options: 1...10

arameter "Transmission behaviour

This parameter is used to set the transmission behavior of the frost alarm.

Options:

On change

On change to frost

On change to no frost

On change and periodically

On change to frost and periodically

On change to no frost and periodically

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "on change and periodically ", "on change to frost and periodically " and "on change to no frost and periodically".

When sending periodically, the frost alarm is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

1.5h



2h

Parameter "Object value with frost"

Define the object value with frost.

Options:

0

1



#### 4.8 Parameter window "Humidity measured value"

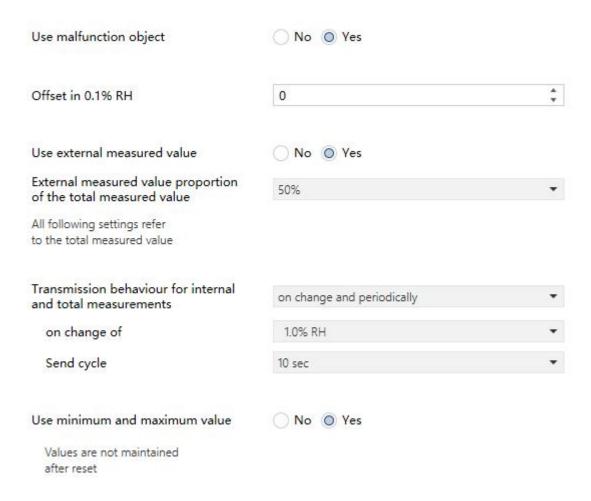
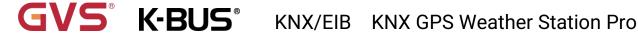



Fig.4.8 Parameter window "Humidity measured value"

#### Parameter: "Use malfunction object"

Select, whether a malfunction object is to be sent if the sensor is faulty.

Options:


No

Yes

#### Parameter: "offset in 0.1% RH"

Use Offsets to adjust the readings to be sent.

Options: -100...100



Parameter: "Use external measured value"

| Thi | s parameter | is us | sed to | set whether | use ext | ernal | measured | value. |
|-----|-------------|-------|--------|-------------|---------|-------|----------|--------|
|-----|-------------|-------|--------|-------------|---------|-------|----------|--------|

Options:

No

Yes

Parameter: "External measured value proportion of the total measured value"

This parameter is used to set external measured value proportion of the total measured value.

Options:

5%

10%

95%

100%

#### All following settings refer to the total measure value

Transmission behaviour for internal and total measurements

This parameter is used to set the transmission behavior of the frost alarm.

Options:

Not

Periodically

On change/

On change and periodically

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically ".



When sending periodically, the humidity measured value is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

•••

1.5h

2h

---Parameter "on change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the humidity measured value sent on the bus as soon as it changes by value set here.

Options:

0.1% RH

0.2% RH

•••

10.0% RH

20.0% RH

Parameter: "Use minimum and maximum value"

The minimum and maximum readings can be saved and sent to the bus. Use the "Reset humidity min/max value" object to reset the values to the current readings. The values are not retained after a reset.

Options:

No

Yes

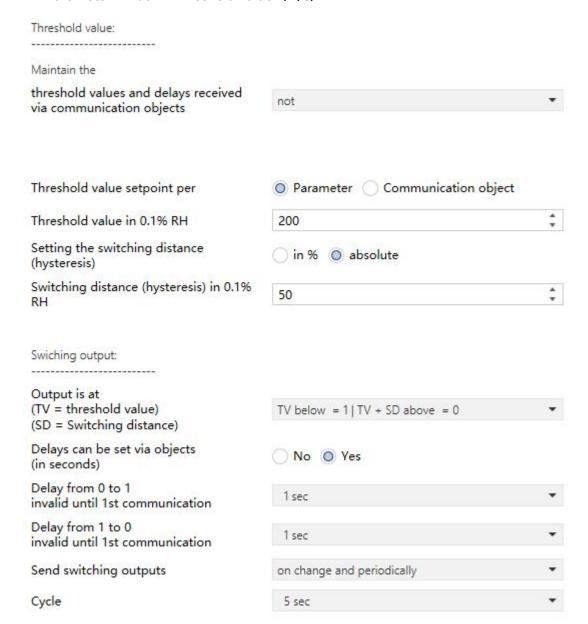


#### 4.9 Parameter window "Humidity threshold value"

| Use threshold value 1 | No Yes    |
|-----------------------|-----------|
| Use threshold value 2 | No Yes    |
| Use threshold value 3 | No No Yes |
| Use threshold value 4 | O No Yes  |

Fig.4.9 Parameter window "Humidity threshold value"

Parameter "Use threshold value 1/2/3/4"


This parameter is used to set whether use air humidity threshold values.

Options:

No

Yes

#### 4.9.1 Parameter window "Threshold value 1/2/3/4"



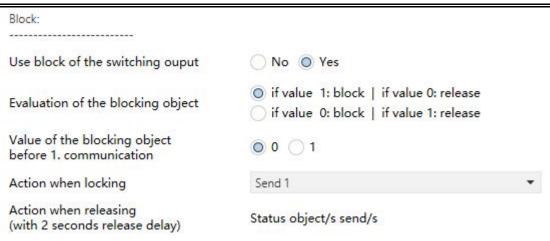



Fig.4.9.1 Parameter window "Threshold value 1/2/3/4"

#### Parameter: "Threshold value in 0.1% RH"

Each threshold value can be set individually.

Options: 1...1000

Other parameter settings are similar to those of the temperature threshold values, see chapter 4.6.1 for detailed operations.



#### 4.10 Parameter window "Dew point measured value"

The KNX GPS Weather Station pro calculates the dew point temperature and can output the value to the bus.



Fig.4.10 Parameter window "Dew point measured value"

# Parameter "Transmission behaviour"

This parameter is used to set the transmission behavior of the dew point measured value.

Options:

Not

Periodically

on change

on change and periodically

——Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically " , "on change and periodically " .

When sending periodically, the dew point measured value is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s



| K-DU3 |
|-------|
|       |
| •••   |
| 1.5h  |

#### ---Parameter "On change of"

2h

This parameter is visible when previous parameter is selected "on change of " , "on change and periodically " .

When sending on change, the dew point measured value sent on the bus as soon as it changes by the value set here.

Options:

0.1°C

0.2°C

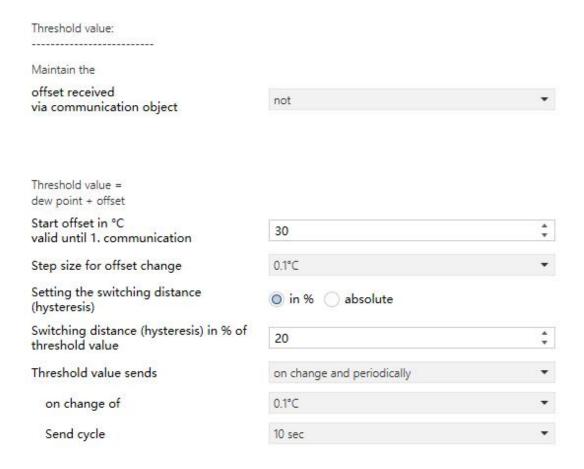
...

2.0°C

5.0°C

Parameter: "Use monitoring of the cooling medium temperature"

Activate the monitoring of the coolant temperature if required.


Options:

No

Yes

#### 4.10.1 Parameter window "Cooling medium temp.monitoring"

A threshold value can be set for the temperature of the coolant, which is based on the current dewpoint temperature (offset/deviation). The switching output of the coolant temperature monitoring system can provide a warning prior to any build-up of condensation in the system, and/or activate appropriate countermeasures.





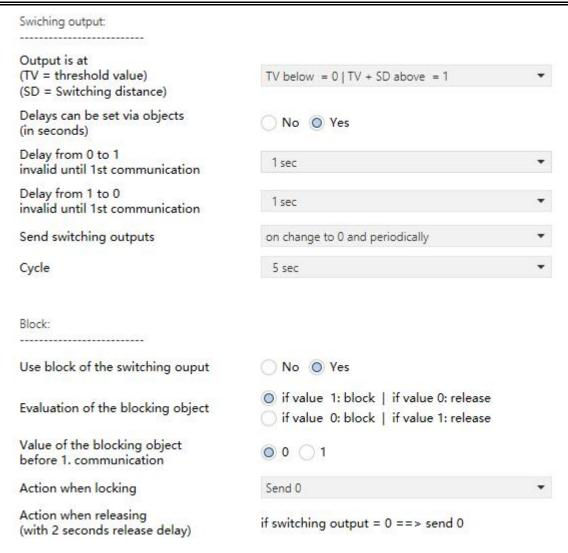



Fig.4.10.1 Parameter window "Cooling medium temp.monitoring"

#### Parameter "offset received via communication objects"

Set, in which cases offset received via object is to be retained.

Options:

Not

After power supply restoration

After power supply restoration and programming



Note: The setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

#### Threshold value = dewpoint temperature + offset

Parameter "Start offset in "C valid until 1.communication"

During initial commissioning, an offset must be defined which is valid until the first communication of a new offset. For units which have already been taken into service, the last communicated offset can be used.

A set offset will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

Options: 0...200

Other parameter settings are similar to those of the temperature threshold values, see chapter 4.6.1 for detailed operations.



#### 4.11 Parameter window "Absolute humidity"

The absolute air humidity value is detected by the KNX GPS Weather pro and can be output to the bus.




Fig.4.11 Parameter window "Absolute humidity"

# Parameter "Use measured values"

This parameter is used to set whether use absolute humidity measured values.

Options:

No

Yes

#### Parameter "Transmission behaviour"

This parameter is used to set the transmission behavior of the absolute humidity.

Options:

Not

Periodically

On change

On change and periodically

#### ---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically " and "on change and periodically " .



When sending periodically, the absolute humidity is sent on the bus in a fixed cycle that can be set here.

| $\sim$  |     |          |     |
|---------|-----|----------|-----|
| ( )     | nti | $\cap$ r | JC. |
| $\circ$ | μu  | O        | าร: |

5sec

10s

...

1.5h

2h

#### ——Parameter "On change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the absolute humidity sent on the bus as soon as it changes by the value set here.

#### Options:

0.1g

0.2g

...

4g

5g



#### 4.12 Parameter window "Comfort field"

The KNX GPS Weather Station pro can send a message to the bus if the limits of the comfort field are exceeded. In this way, it is for example possible to monitor compliance with DIN 1946 (standard values) or even to define your own comfort field.

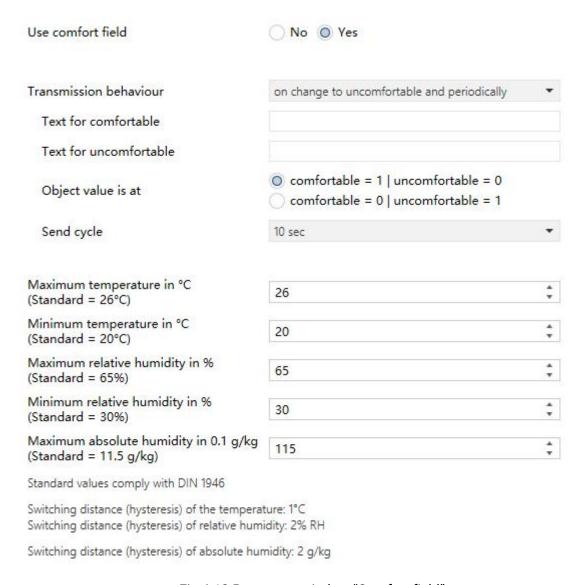



Fig.4.12 Parameter window "Comfort field"

Parameter: "Use comfort field"

This parameter is used to set whether use comfort field.



Options:

No

Yes

Parameters as follow are visible when "Use comfort field" is selected "yes".

Parameter: "Transmission behaviour"

This parameter is used to set the transmission behavior of the comfort field.

Options:

Not

On change

On change to comfortable

On change to uncomfortable

On change and periodically

On change to comfortable and periodically

On change to uncomfortable and periodically

——Parameter "Send cycle"

This parameter is visible when previous parameter is selected "On change and periodically ", "On change to comfortable and periodically " and "On change to uncomfortable and periodically".

When sending periodically, the comfort field is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

...

1.5h

2h



- ---Parameter "Text for comfortable"
- ——Parameter "Text for uncomfortable"

Specify the sending text for comfortable and uncomfortable.

Parameters as follow are visible when "Transmission behaviour" is no selected "not".

---Parameter "Object value is at"

Specify the sending how the object value should be.

Options:

Comfortable = 1| uncomfortable = 0

Comfortable = 0| uncomfortable = 1

Parameter "Maximum temperature in "C(Standard = 26°C)"

Parameter: "Minimum temperature in: "C(Standard = 20°C)"

Parameter "Maximum relative humidity in %(Standard = 26%)"

Parameter: "Minimum relative humidity in %(Standard = 26°C)"

Parameter: "Maximum absolute humidity in 0.1 g/kg (Standard = 11.5 g/kg)"

Define the comfort field by specifying the minimum and maximum values for temperature and humidity. The specified standard values comply with DIN 1946

Options: 25...40

Options: 10...21 Options: 52...90

Options: 10...43

Options: 50...2000

Standard values comply with DIN 1946

Switching distance (hysteresis) of the temperature: 1°C

Switching distance (hysteresis) of relative humidity: 2% RH

Switching distance (hysteresis) of absolute humidity: 2 g/kg



#### 4.13 Parameter window "Brightness"

Set the send pattern for the measured brightness. The highest currently measured value of the five internal sensors is used as the brightness value (since this maximum value is the best basis for shading control, the 5 individual sensor values are not output).



Fig.4.13 Parameter window "Brightness"

# Parameter: "Transmission behaviour" This parameter is used to set the transmission behavior of the brightness value.

Options:

Not
Periodically
On change
On change and periodically

——Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically".

When sending periodically, the brightness measurement value is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

•••



1.5h

2h

#### ---Parameter "at and above change in %"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the brightness measurement value sent on the bus as soon as it changes by the value set here.

Options: 1...100

#### 4.14 Parameter window "Brightness threshold values"

| Use threshold value 1 | No Yes     |
|-----------------------|------------|
| Use threshold value 2 | No Yes     |
| Use threshold value 3 | No Ves     |
| Use threshold value 4 | No Yes     |
| Use threshold value 5 | No Ves     |
| Use threshold value 6 | No Ves     |
| Use threshold value 7 | O No O Yes |
| Use threshold value 8 | O No Ves   |

Fig.4.14 Parameter window "Brightness threshold values"

Parameter "Use threshold value 1/2/3/4"

This parameter is used to set whether use brightness threshold values.

Options:

No

Yes



#### 4.14.1 Parameter window "Threshold value 1/.../8"

| Threshold value:                                                    |                                  |   |
|---------------------------------------------------------------------|----------------------------------|---|
| Maintain the                                                        |                                  |   |
| threshold values and delays received via communication objects      | not                              |   |
| Threshold value setpoint per                                        | Parameter Communication object   |   |
| Threshold value in lux                                              | 1000                             | ÷ |
| Setting the switching distance (hysteresis)                         | in % absolute                    |   |
| Switching distance (hysteresis) in Lux                              | 30000                            | ÷ |
| Swiching output:                                                    |                                  |   |
| Output is at<br>(TV = threshold value)<br>(SD = Switching distance) | TV above = 1   TV - SD below = 0 | • |
| Delays can be set via objects (in seconds)                          | ○ No ○ Yes                       |   |
| Delay from 0 to 1 invalid until 1st communication                   | 1 sec                            | * |
| Delay from 1 to 0 invalid until 1st communication                   | 1 sec                            | * |
| Send switching outputs                                              | on change and periodically       | - |
| Cycle                                                               | 5 sec                            | - |

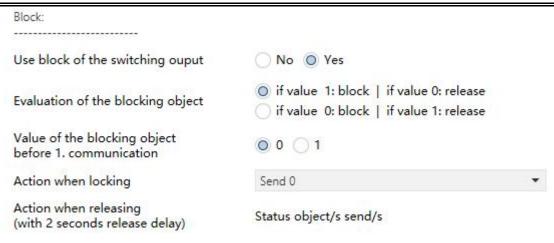



Fig.4.14.1 Parameter window "Threshold value 1/.../8"

## Parameter "Threshold value in lux"

Each threshold value can be set individually.

Options: 1000...15000

Other parameter settings are similar to those of the temperature threshold values, see chapter 4.6.1 for detailed operations.

#### 4.15 Parameter window "Brightness, TV twilight sensor"

| These threshold values refer to the sky sensor. |          |
|-------------------------------------------------|----------|
| Use threshold value 1                           | No Ves   |
| Use threshold value 2                           | No Yes   |
| Use threshold value 3                           | No Yes   |
| Use threshold value 4                           | O No Yes |

Fig.4.15 Parameter window "Brightness, TV twilight sensor"

These threshold values refer to the sky sensor.

Parameter "Use threshold value 1/2/3/4"

This parameter is used to set whether use twilight brightness threshold value.

Options:

No

Yes



#### 4.15.1 Parameter window "Threshold value 1/2/3/4"

| Threshold value:                                                    |                                  |   |
|---------------------------------------------------------------------|----------------------------------|---|
| Maintain the                                                        |                                  |   |
| threshold values and delays received via communication objects      | not                              | * |
| Threshold value setpoint per                                        | O Parameter Communication object |   |
| Threshold value in lux                                              | 10                               | ÷ |
| Setting the switching distance (hysteresis)                         | in % absolute                    |   |
| Switching distance (hysteresis) in Lux                              | 5                                | + |
| Swiching output:                                                    |                                  |   |
| Output is at<br>(TV = threshold value)<br>(SD = Switching distance) | TV above = 1   TV - SD below = 0 | • |
| Delays can be set via objects (in seconds)                          | No Yes                           |   |
| Delay from 0 to 1<br>invalid until 1st communication                | 1 sec                            | • |
| Delay from 1 to 0 invalid until 1st communication                   | 1 sec                            | • |
| Send switching outputs                                              | on change and periodically       | • |
| Cycle                                                               | 5 sec                            |   |

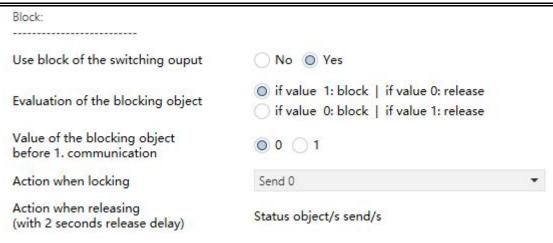



Fig.4.15.1 Parameter window "Threshold value 1/2/3/4"

Parameter "Threshold value in lux"

Each threshold value can be set individually.

Options: 1000...15000

Other parameter settings are similar to those of the temperature threshold values, see chapter 4.6.1 for detailed operations.



#### 4.16 Parameter window "Night"

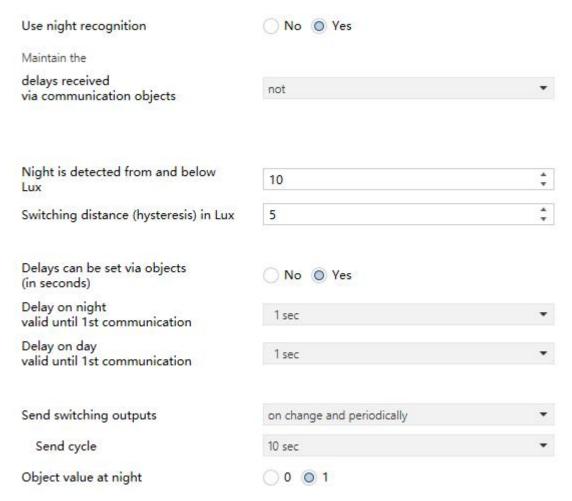



Fig.4.16 Parameter window "Night"

Parameter: "Use night recognition"

This parameter is used to set whether use night recognition.

Options:

No

Yes

Parameters as follow are visible when "use night recognition" is selected "yes".

Parameter: "Night is detected from and below Lux"

Parameter "Switching distance (hysteresis) in Lux"

Specify below which brightness the device should recognise "night" and with which switching distance this is to be outputted.

Options: 1...1000

Options: 0...500

Parameter "Delays can be set via objects(in seconds)"

The delay times in seconds can be defined via objects.

Options:

No

Yes

——Parameter "Delay on night"

---Parameter "Delay on day"

These parameters are visible when previous parameter is selected "NO".

Set the delay time for switching night/day.

Options: none/5 sec/10s/.../1.5h/2h

——Parameter "Delay on night valid until 1st communication"

——Parameter "Delay on day valid until 1st communication"

These parameters are visible when previous parameter is selected "yes".

Set the delay time for switching night/day valid until 1st communication.

Options: none/5 sec/10s/.../1.5h/2h

Parameter: "Switching output sends:

Here you set when the switching output is to be sent to the bus.



Options:

on change
on change to night
on change to day
on change and periodically
on change to night and periodically
on change to day and periodically

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "on change and periodically ", "on change to night and periodically " and "on change to day and periodically".

When sending periodically, the night switching output is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

•••

1.5h

2h

Parameter "Object value at night"

Define the object value at night.

Options:

0

1



### 4.17 Parameter window "Sun position"

| Sun position           | is calculated is received                                             |   |
|------------------------|-----------------------------------------------------------------------|---|
| Object type            | <ul><li>4 byte floating point</li><li>2 byte floating point</li></ul> |   |
| Transmission behaviour | on change and periodically                                            |   |
| on change of           | 1.0 degrees                                                           |   |
| Send cycle             | 1 min                                                                 | - |

Fig.4.17 Parameter window "Sun position"

## Parameter "Sun position"

Select whether the device should calculate the sun position itself or if the values are received via the bus.

Options:

Is calculated

Is received

### Parameter "Object type"

This parameter is used to set the object type.

Options:

4 byte floating point

2 byte floating point

### Parameter: "Transmission behaviour"

This parameter is visible when parameter "Sun position" is selected "is received".

This parameter is used to set the transmission behavior of the sun position.

Options:



Not
Periodically
On change
On change and periodically

——Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically".

When sending periodically, the sun position is sent on the bus in a fixed cycle that can be set here.

5sec

10s

...

1.5h

2h

---Parameter "On change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the sun position sent on the bus as soon as it changes by the value set here.

Options:

Options:

0.1 degrees

0.2 degrees

•••

5.0 degrees



### 4.18 Parameter window "Wind measurement"

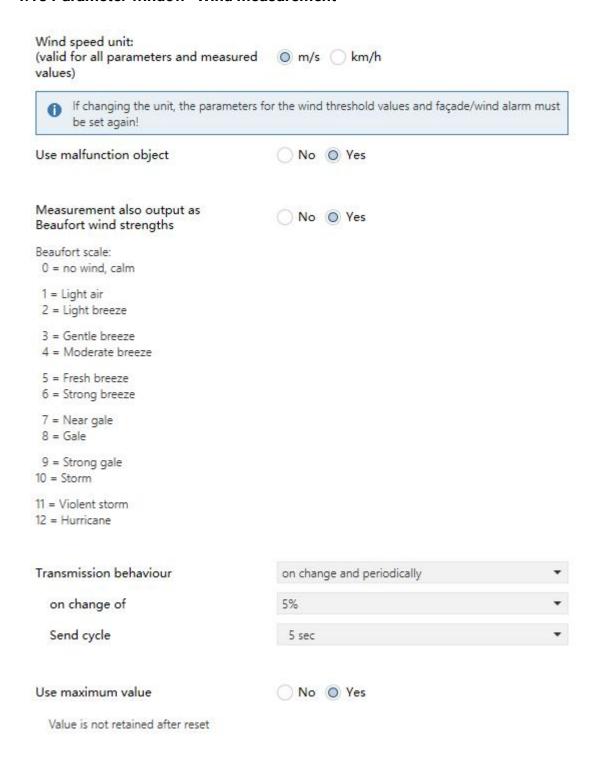



Fig.4.18 Parameter window "Wind measurement"

er: "Wind speed unit: (valid for all parameters and measured values)".

|   | This parameter is used to set the wind speed unit.                                        | *0*0*0*0*0 |
|---|-------------------------------------------------------------------------------------------|------------|
|   | Options:                                                                                  |            |
|   |                                                                                           |            |
|   | M/s                                                                                       |            |
|   | Km/h                                                                                      |            |
| a | rameter "Use malfunction object"                                                          |            |
|   | This parameter is used to set whether use malfunction object.                             |            |
|   | Options:                                                                                  |            |
|   | No                                                                                        |            |
|   | Yes                                                                                       |            |
| a | rameter "Measurement also output as Beaufort wind strengths"                              |            |
|   | This parameter is used to set whether measurements are output as beaufort wind strengths. |            |
|   | Options:                                                                                  | •          |
|   | No No                                                                                     |            |
|   | Yes                                                                                       |            |
|   | Beaufort scale:                                                                           |            |
|   | 0=no wind,calm                                                                            |            |
|   | 1=Light air                                                                               |            |
|   | 2=Light breeze                                                                            |            |
|   | 3=Gentle breeze                                                                           |            |
|   | 4=Moderate Breeze                                                                         |            |
|   | 5=Fresh Breeze                                                                            |            |
|   | 6=Strong Breeze                                                                           |            |
|   | 7=Near gale                                                                               |            |



2h

|                | KINA/EID KINA GPS Wedther Station Plo                                                      |
|----------------|--------------------------------------------------------------------------------------------|
| 8=Gale         |                                                                                            |
| 9=Strong       | gale                                                                                       |
| 10=Storm       |                                                                                            |
| 11=Violen      | nt storm                                                                                   |
| 12=Hurric      | ane                                                                                        |
| Parameter "T   | ransmission behaviour"                                                                     |
| This parar     | meter is used to set the transmission behavior of the wind measurement.                    |
| Options:       |                                                                                            |
|                | Not                                                                                        |
|                | Periodically                                                                               |
|                | On change                                                                                  |
|                | On change and periodically                                                                 |
| ——Paran        | neter "Send cycle"                                                                         |
| This parar     | meter is visible when previous parameter is selected "periodically" and "on change and     |
| periodically". |                                                                                            |
| When sen       | ding periodically, the wind measurement value is sent on the bus in a fixed cycle that car |
| be set here.   |                                                                                            |
| Options:       |                                                                                            |
|                | 5sec                                                                                       |
|                | 10s                                                                                        |
|                | ···                                                                                        |
|                | 1.5h                                                                                       |



### ---Parameter "on change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the wind measurement value is sent on the bus as soon as it changes by the value set here.

Options:

2%

5%

•••

25%

50%

### Parameter: "Use maximum values

This parameter is used to set whether use maximum values.

Options:

No

Yes



### 4.19 Parameter window "Wind threshold value"

| Use threshold value 1 | No Yes   |
|-----------------------|----------|
| Use threshold value 2 | No Yes   |
| Use threshold value 3 | No Yes   |
| Use threshold value 4 | O No Yes |

Fig.4.19 Parameter window "Wind threshold value"

# "Use threshold value 1/2/3/4"

This parameter is used to set whether use wind threshold value.

Options:

No

Yes



# K-BUS KNX/EIB KNX GPS Weather Station Pro

### 4.19.1 Parameter window "Threshold value 1/2/3/4"

| Threshold value:                                                    |                                  |   |
|---------------------------------------------------------------------|----------------------------------|---|
| Maintain the                                                        |                                  |   |
| threshold values and delays received via communication objects      | not                              | • |
| Threshold value setpoint per                                        | O Parameter Communication object |   |
| Threshold value in 0.1 m/s                                          | 40                               | * |
| Setting the switching distance (hysteresis)                         | in % absolute                    |   |
| Switching distance (hysteresis) in 0.1 m/s                          | 20                               | ÷ |
| Swiching output:                                                    |                                  |   |
| Output is at<br>(TV = threshold value)<br>(SD = Switching distance) | TV above = 1   TV - SD below = 0 | • |
| Delays can be set via objects<br>(in seconds)                       | ○ No ② Yes                       |   |
| Delay from 0 to 1 invalid until 1st communication                   | 1 sec                            | • |
| Delay from 1 to 0 invalid until 1st communication                   | 1 sec                            | * |
| Send switching outputs                                              | on change and periodically       | • |
| Cycle                                                               | 5 sec                            |   |

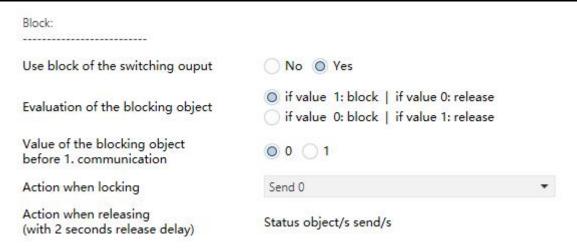



Fig.4.7.1 Parameter window "Wind threshold value 1/2/3/4"

# Parameter: "Threshold value in 0.1m/s"

Each threshold value can be set individually.

Options:1...350

Other parameter settings are similar to those of the temperature threshold values, see chapter 4.6.1 for detailed operations.



### 4.20 Parameter window "Wind direction"

| Measured value object:                         |                             |   |
|------------------------------------------------|-----------------------------|---|
| Send measured value                            | on change and periodically  | * |
| on change of                                   | 5°                          | * |
| Send cycle                                     | 5 sec                       | • |
| Send measured value as:                        | 1 byte object 4 byte object |   |
| Text object:                                   |                             |   |
| Send wind direction as text                    | on change and periodically  | • |
| Wind direction Switching distance (hysteresis) | 5°                          | • |
| Send cycle:                                    | 5 sec                       | * |
| at lower wind speed (v < 0.5 m/s):             | Windstille                  |   |
| North (0°):                                    | Nord                        |   |
| North-East (45°):                              | Nord-Ost                    |   |
| East (90°):                                    | Ost                         |   |
| South-East (135°):                             | Süd-Ost                     |   |
| South (180°):                                  | Süd                         |   |
| South-West (225°):                             | Süd-West                    |   |
| West (270°):                                   | West                        |   |
| North-West (315°):                             | Nord-West                   |   |



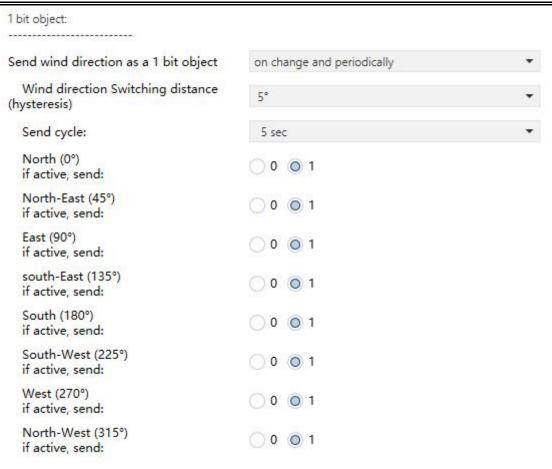



Fig.4.20 Parameter window "Wind direction"

#### Measured value object:

Parameter "Send measured value"

This parameter is used to set the transmission behavior of the wind direction measured value.

Options:

No

Periodically

On change

On change and periodically



### ---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically".

When sending periodically, the wind direction measured value is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

...

1.5h

2h

### ---Parameter "on change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the wind direction measured value is sent on the bus as soon as it changes by the value set here.

Options:

2%

5%

• • •

25%

50%

### ---Parameter "send measured value as:"

This parameter is visible when previous parameter is no selected "no".

This parameter is used to set the send measured value as 1 byte object or 4 byte object.



Options:

1 byte object

4 byte object

### Text object:

Parameter "Send wind direction as text"

Specify whether the wind direction should be sent as text.

Options:

No

**Periodically** 

On change

On change and periodically

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically".

When sending periodically, the wind direction measure value is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

•••

1.5h

2h

---Parameter "Wind direction switching distance (hysteresis)"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".



When sending on change, the wind direction switching distance sent on the bus as soon as it changes by the value set here.

### Options:

0°

1°

...

16°

20°

```
Parameter "at lower wind speed (v=0.5 m/e)"

Parameter "North (0")"

Parameter "North East(45")"

Parameter "East(90")"

Parameter "South East(135")"

Parameter "South West(225")"

Parameter "North-West(315")"
```

This parameter customizes the text description of the wind direction sent to the bus.

### 1 bit object:

```
Parameter "Send wind direction as a 1 bit object"
```

Specify whether the wind direction is to be sent as a 1 bit object.

Options:



| CVD                 | K-BUS                   | KNX/EIB            | KNX GPS Weather Station Pro                       |
|---------------------|-------------------------|--------------------|---------------------------------------------------|
|                     | No                      |                    |                                                   |
|                     | Periodically            |                    |                                                   |
|                     | On change               |                    |                                                   |
|                     | On change and pe        | riodically         |                                                   |
| ——Parameter         | "Send cycle"            |                    |                                                   |
| This parameter      | r is visible when previ | ous parameter is   | selected "periodically" and "on change and        |
| periodically".      |                         |                    |                                                   |
| When sending        | periodically, the wind  | direction measu    | re value is sent on the bus in a fixed cycle that |
| can be set here.    |                         |                    |                                                   |
| Options:            |                         |                    |                                                   |
|                     | 5sec                    |                    |                                                   |
|                     | 10s                     |                    |                                                   |
|                     |                         |                    |                                                   |
|                     | 1.5h                    |                    |                                                   |
|                     | 2h                      |                    |                                                   |
| ——Parameter         | "Wind direction swit    | tching distance (  | hysteresis)"                                      |
| This parameter      | r is visible when previ | ous parameter is   | selected "on change" and "on change and           |
| periodically".      |                         |                    |                                                   |
| When sending        | on change, the wind o   | lirection switchin | g distance sent on the bus as soon as it          |
| changes by the valu | ue set here.            |                    |                                                   |
| Options:            |                         |                    |                                                   |
|                     | 0°                      |                    |                                                   |
|                     | 1°                      |                    |                                                   |
|                     |                         |                    |                                                   |

16°



### **20°**

```
Parameter *North (0*) if active send*

Parameter *Rorth East(45*) if active send*

Parameter *South East(45*) if active send.*

Parameter *South East(135*) if active send.*

Parameter *South (180*) if active send.*

Parameter *South (180*) if active send.*

Parameter *South (180*) if active send.*

Parameter *West(225*) if active send.*

Parameter *North-West(315*) if active send.*
```

This parameter customizes the text description of the wind direction sent to the bus.

Options:

0

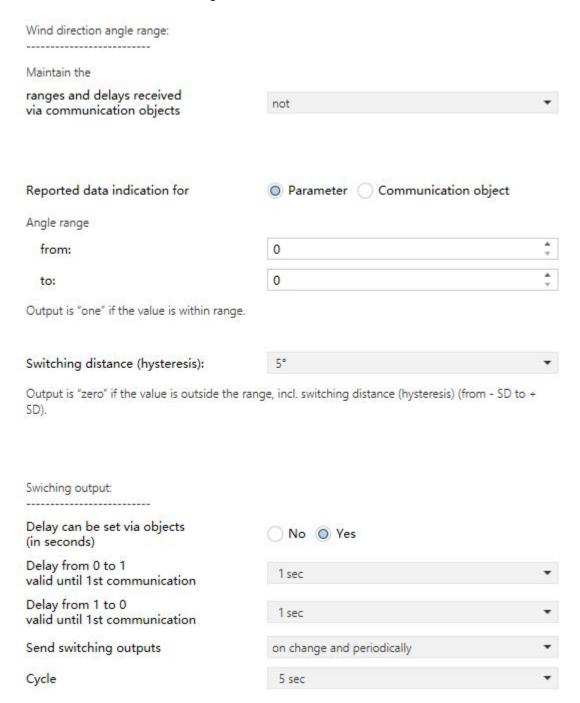
1

### 4.21 Parameter window "Wind direction ranges"

Use range 1 No Yes Use range 2 O No Yes Use range 3 O No Yes Use range 4 O No Yes

Parameter "Use range 1/2/3"

This parameter is used to set whether use wind direction ranges.


Options:

No

Yes

## KNX/EIB KNX GPS Weather Station Pro

### 4.21.1 Parameter window "Range 1/2/3/4"



| Block                                                 |                                         |   |
|-------------------------------------------------------|-----------------------------------------|---|
| 8475000000000000000000000000000000000000              |                                         |   |
| Use switching procedure block                         | No Ves                                  |   |
| Evaluation of the blocking object                     | if value 1: block   if value 0: release |   |
| Evaluation of the blocking object                     | if value 0: block   if value 1: release |   |
| Value of the blocking object before 1st communication | ○ 0                                     |   |
| Action when locking                                   | do not send telegram                    | * |
| Action upon release (with 2 seconds release delay)    | Status object/s send/s                  |   |

Fig.4.21.1 Parameter window "Range 1/2/3/4"

### Wind direction angle range:

### Maintain the

Parameter "Ranges and delays received via communication objects"

Set, in which cases ranges and delay times received are to be kept per object. The parameter is only taken into consideration if the specification/ setting by object is activated further down.

Options:

Not

After power supply restoration

After power supply restoration and programming

Note: The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Parameter "Reported data indication for"

Select whether the range is to be specified per parameter or via a communication object.

Options:

**Parameter** 

**Communication object** 

Parameter: "Switching distance (hysteresis)"

| This | parameter | is used | l to | set | the | switcl | hing | distance. |
|------|-----------|---------|------|-----|-----|--------|------|-----------|
|------|-----------|---------|------|-----|-----|--------|------|-----------|

Options:

0°

5°

16°

20°

These parameter is visible when "reported data indication for" is selected "Parameter".

### Angel range

---Parameter "from:"

——Parameter "to:"

When the angle range per parameter is specified, then the value is set.

Options: 0...359

These parameter is visible when "Threshold value setpoint per" is selected "Communication object".

---Parameter "Type of threshold change"

This parameter is used to set the type of threshold change.

Options:

Absolute value

Increment/decrement

---Parameter "Step size"

This parameters are visible when previous parameter is selected "Increment/decrement".



## K-BUS<sup>®</sup> KNX/EIB KNX GPS Weather Station Pro

This parameter is used to set the increment/decrement step size.

Options:

1°

2°

•••

20°

30°

Other parameter settings are similar to those of the temperature threshold values, see chapter 4.6.1 for detailed operations.



### 4.22 Parameter window "Pressure measured value"

| (1 Pa = 0.01 hPa = 0.01 mbar)                                            |                            |   |
|--------------------------------------------------------------------------|----------------------------|---|
| Normal air pressure:<br>at sea level, temperature-compensated            |                            |   |
| Barometric pressure:<br>direct sensor measurement                        |                            |   |
| Typical normal air pressure values:                                      |                            |   |
| up to 98,000 Pa: Pressure is very low ==> Weather is stormy              |                            |   |
| 98,000100,000 Pa: Pressure is low<br>==> Weather is rainy                |                            |   |
| 100,000102,000 Pa: Pressure is normal<br>==> Weather is changeable       |                            |   |
| 102,000104,000 Pa: Pressure is high<br>==> Weather is sunny              |                            |   |
| at and above 104,000 Pa: Pressure is very<br>high==> Weather is very dry |                            |   |
| Use malfunction object                                                   | No Yes                     |   |
| Measurement also output as barometric pressure                           | No Ves                     |   |
| Transmit behaviour measurement                                           | on change and periodically | • |
| on change of                                                             | 10 Pa                      | • |
| Send cycle                                                               | 1 min                      | * |
| Use minimum and maximum value                                            | No Yes                     |   |
| Values are not maintained after reset                                    |                            |   |



| Transmission behaviour text object                | on change and periodically | • |
|---------------------------------------------------|----------------------------|---|
| Text for normal pressure range                    |                            |   |
| < 98,000 Pa<br>(e.g. weather is stormy)           | stürmisch                  |   |
| 98,000100,000 Pa<br>(e.g. weather is rainy)       | regnerisch                 |   |
| 100,000102,000 Pa<br>(e.g. weather is changeable) | wechselhaft                |   |
| 102,000104,000 Pa<br>(e.g. weather is sunny)      | sonnig                     |   |
| >104,000 Pa<br>(e.g. weather is very dry)         | sehr trocken               |   |
| Send cycle                                        | 1 min                      | • |

Fig.4.22 Parameter window "Pressure measured value"

Air pressure unit: Pa

(1 Pa=0.01hPa=0.01mbar)

Normal air pressure:

At sea level, temperature-compensated

**Barometric pressure:** 

**Direct sensor measurement** 

Typical normal air pressure values:

Up to 98,000 Pa:Pressure is very low

==>Weather is rainy

100,000...102,000 Pa:Pressure is high

==>Weather is changeable

102,000...104,000 Pa:Pressure is high

==>Weather is sunny

At and above 104,000 Pa:pressure is bery

high==>Weather is very dry

'arameter "Use malfunction object"

This parameter is used to set whether use malfunction object.

Options:

No

Yes

Parameter: "Measurement also output as barometric pressure"

Specify whether the measured value is, in addition, to be outputted as barometric pressure (see below Information on air pressure).

Options:

No

Yes

arameter: "Transmit behaviour measurement

This parameter is used to set the transmission behavior of the pressure measured value sent to the bus.

Options:

No

Periodically

On change

On change and periodically

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically".

When sending periodically, the pressure measured value is sent on the bus in a fixed cycle that can be set here.

| Options:                   |
|----------------------------|
| 5sec                       |
| 10s                        |
|                            |
| 1.5h                       |
| 2h                         |
| ——Parameter "on change of" |

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the pressure measured value is sent on the bus as soon as it changes by the value set here.

Options:

10Pa

20Pa

200Pa

500Pa

"Use minimum and maximum value"

This parameter is used to set whether use minimum and maximum value.

Options:

No

Yes

### Values are not maintained after reset

Parameter: "Transmission behaviour text object"

Specify whether the pressure measured value should be sent as text.



Options:

No

Periodically

On change

On change and periodically

### Text for normal pressure range

```
Parameter "<98,000 Pa (e.g. weather is stormy)"

Parameter "<98,000 ... 1000,000 Pa (e.g. weather is rainy)"

Parameter "100,000 ... 102,000 Pa (e.g. weather is changeable)"

Parameter "102,000 ... 104,000 Pa (e.g. weather is sumny)"

Parameter ">104,000 Pa (e.g. weather is bety dry)"
```

This parameter customizes the text description of the wind direction sent to the bus.

### ——Parameter "Send cycle"

This parameter is visible when parameter "Transmission behaviour text object" is selected "periodically" and "on change and periodically".

When sending periodically, the pressure measure value is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

•••

1.5h

2h

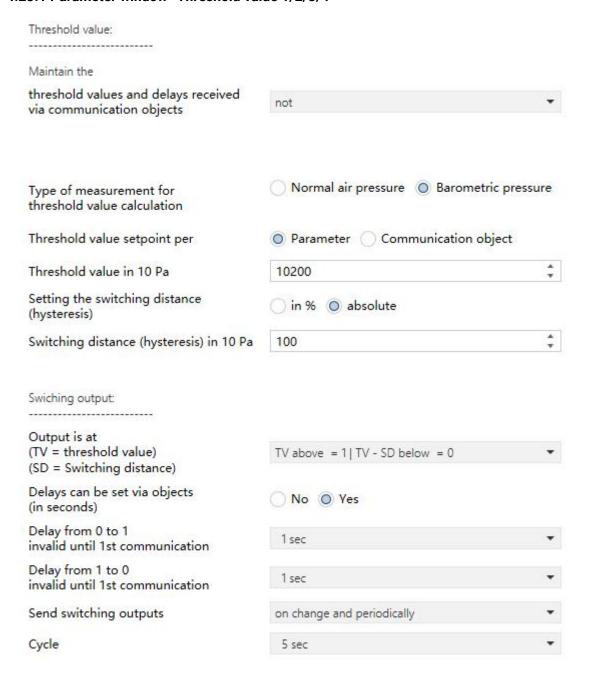
### 4.23 Parameter window "Pressure threshold values"

| Use threshold value 1 | O No Yes  |
|-----------------------|-----------|
| Use threshold value 2 | No Yes    |
| Use threshold value 3 | No Yes    |
| Use threshold value 4 | ○ No  Yes |

Fig.4.9 Parameter window "Pressure threshold values"

Parameter: "Use threshold value 1/2/3/4"

This parameter is used to set whether use pressure threshold value.


Options:

No

Yes



#### 4.23.1 Parameter window "Threshold value 1/2/3/4"



## **K-BUS** KNX/EIB KNX GPS Weather Station Pro

| Block:                                                  |                                                                                 |   |
|---------------------------------------------------------|---------------------------------------------------------------------------------|---|
| Use block of the switching ouput                        | No Ves                                                                          |   |
| Evaluation of the blocking object                       | if value 1: block   if value 0: release if value 0: block   if value 1: release |   |
| Value of the blocking object before 1. communication    | ◎ 0 ○ 1                                                                         |   |
| Action when locking                                     | Send 0                                                                          | • |
| Action when releasing<br>(with 2 seconds release delay) | Status object/s send/s                                                          |   |

Fig.4.9 Parameter window "Threshold value 1/2/3/4"

"Type of measurement for threshold value calculation"

This parameter is used to set the type of measurement for threshold value calculation.

Options:

Normal air pressure

**Barometric pressure** 

Parameter "Threshold value in 10Pa"

Each threshold value can be set individually.

Options: 3000...11000

Other parameter settings are similar to those of the temperature threshold values, see chapter 4.6.1 for detailed operations.



### 4.24 Parameter window "Summer compensation"

With the summer compensation the target value for the room temperature can automatically be adapted by cooling at higher outdoor temperatures. The objective is to prevent a too great a difference between indoor and outdoor temperature in order to keep the energy consumption low.

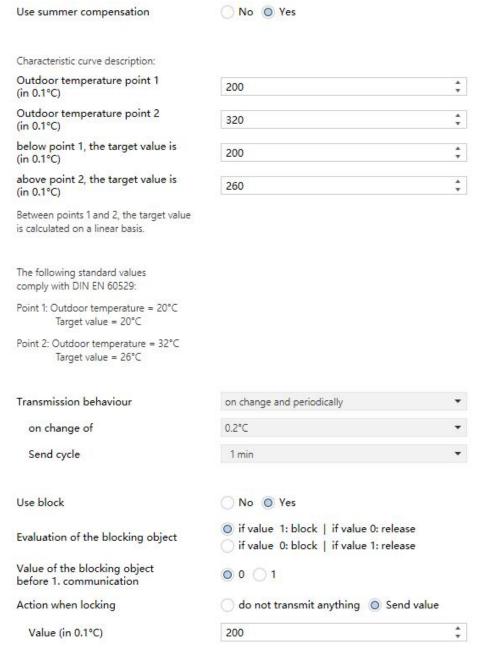



Fig.4.24 Parameter window "Summer compensation"

'arameter:: "Use summer compensation"

This parameter is used to set whether use summer compensation.

Options:

No

Yes

Parameters as follow are visible when "use summer compensation" is selected "yes".

Characteristic curve description:

Parameter: "Outdoor temperature point  $1({
m in}~0.1^{\circ}{
m C})^{\circ}$ 

Parameter: "Outdoor temperature point 2(in 0.1°C)

Parameter :"below point 1, the target value is(in 0.1°C)"

Parameter: "above point 2, the target value is(in  $0.1^{\circ} \mathrm{C}$ )"

Using the points 1 and 2, define the outdoor temperature range in which the target value for the indoor temperature is to be adapted linearly. Then, specify which indoor temperature target values are to be valid below point 1 and above point 2.

Options: 0...500

Between points 1 and 2, the target value is calculated on a linear basis.

The following standard values

Comply with DIN EN 60529:

Point 1: Outdoor temperature = 20°C

Target value = 20°C

Point 2: Outdoor temperature = 32°C

Target value = 26°C



Parameter: "Transmit behaviour"

This parameter is used to set the transmission behavior of the summer compensation value.

Options:

Periodically

On change

On change and periodically

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "periodically" and "on change and periodically".

When sending periodically, the summer compensation value is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10s

1.5h

2h

---Parameter "on change of"

This parameter is visible when previous parameter is selected "on change" and "on change and periodically".

When sending on change, the summer compensation value is sent on the bus as soon as it changes by the value set here.

Options:

0.1°C

0.2°C



...

2.0°C

5.0°C

Parameter: "Use block"

This parameter is used to set whether activate the block for the summer compensation.

Options:

No

Yes

Parameters as follow are visible when "use block" is selected "yes".

Parameter "Evaluation of the blocking object"

This parameter is used to set what a 1 or 0 at the block entry means.

Options:

If value 1:block | if value 0: release

If value 0:block | if value 1: release

Parameter: "Value of the blocking object before 1 communication"

An object value up to the 1st communication is specified here.

Options:

0

1

Parameter: "Action when locking"

This parameter is used to set the action when locking.

Options:

Do not transmit anything

Send value



### ---Parameter "Value (in 0.1°C)"

This parameter is visible when previous parameter is selected "send value".

This parameter is used to set the value to be sent when locking.

Options: 0...500



### 4.25 Parameter window "Facades"

If necessary, activate the facade controller (shading controller). When the facade controller is activated, the objects for the simulation of various parameter settings can also be activated. For this simulation, with the exception of a retraction delay (10 seconds), no time functions (delay times etc.) are used. Please observe the instructions for the simulation in chapter 4.25.1.7 Simulation.

| Use façades                                         | ○ No ○ Yes  |
|-----------------------------------------------------|-------------|
| Use simulation objects                              | No Yes      |
| Use façade 1                                        | No Yes      |
| Use façade 2                                        | O No Yes    |
| Use façade 3                                        | No Yes      |
| Use façade 4                                        | O No Yes    |
| Use façade 5                                        | No Yes      |
| Use façade 6                                        | O No Yes    |
| Use façade 7                                        | O No Yes    |
| Use façade 8                                        | O No Yes    |
| Use façade 9                                        | O No Yes    |
| Use façade 10                                       | O No Yes    |
| Use façade 11                                       | No Yes      |
| Use façade 12                                       | No Yes      |
|                                                     | Fig.4.25(1) |
| General settings                                    |             |
| Maintain the                                        |             |
| threshold values received via communication objects | not •       |



## KNX/EIB KNX GPS Weather Station Pro

### Fig.4.25(2)Facades\_General settings

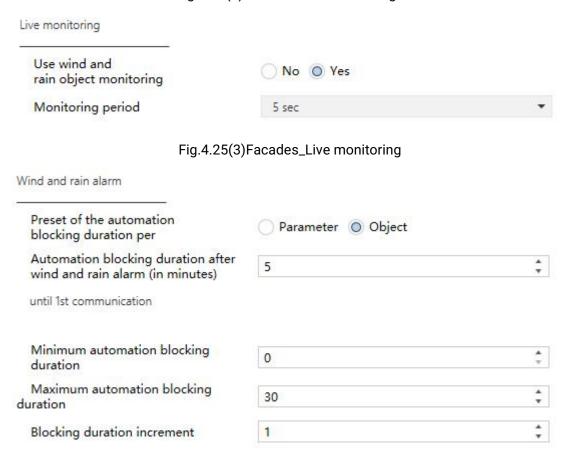



Fig.4.25(4)Facades\_Wind and rain alarm

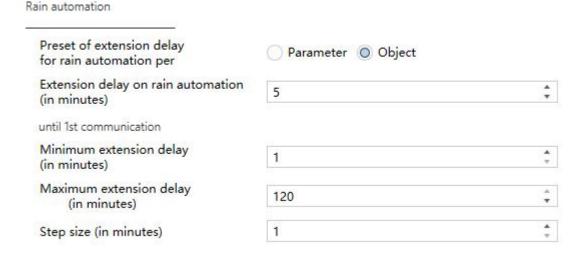



Fig.4.25(5)Facades\_Rain automation



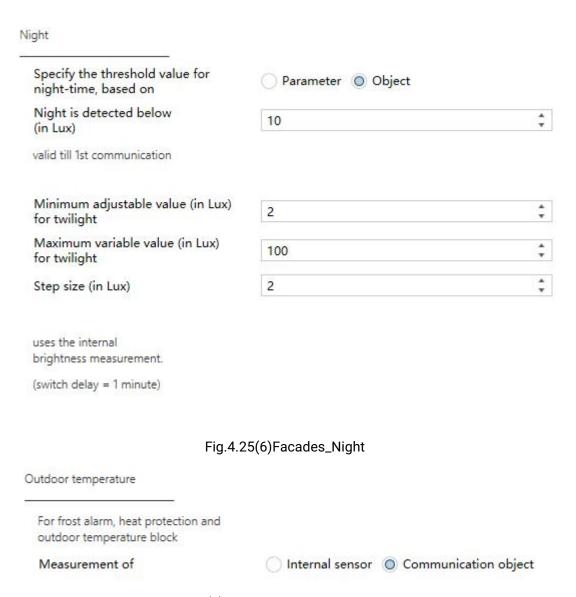



Fig.4.25(7)Facades\_Outdoor temperature



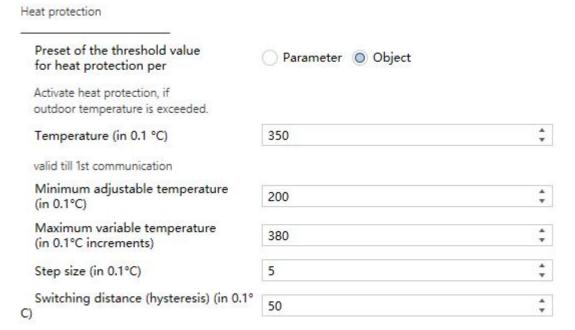



Fig.4.25(8)Facades\_Heat protection



### Frost alarm Preset of frost protection values per Parameter O Object Start frost alarm if an Outdoor temp. of (in 0.1°C 20 valid until 1st communication) is underrun, during or up to (valid in hours 5 until 1st communication) after precipitation. Min. adjustable ext. temperature -10 (in 0.1°C) Max. variable external 40 temperature (in 0.1°C) Minimum adjustable end time 1 (in hours) Maximum variable start time 10 (in hours) End frost alarm if an Outdoor temp. of (in 0.1°C 50 valid until 1st communication) is exceeded for more than (valid in hours 5 until 1st communication) Min. adjustable ext. temperature 20 (in 0.1°C) Max. variable external 100 temperature (in 0.1°C) Minimum adjustable end time 1 (in hours)

Fig.4.25(9)Facades\_Frost alarm

10

5

Maximum variable end time

Temperature increment

(in hours)

(in 0.1°C)



Analysis of the status release object 0 = activated | 0 = deactivated | 0 = deactivated | 0 = activated | 1 = deactivated | 0 = deactivated | 0 = activated | 1 = deactivated | 0 = activated | 0 = activated

Fig.4.25(10)Facades\_Facades status output

Texts that are output with object "Façade X channel state text"

| Safety                      | Sicherheit                |  |
|-----------------------------|---------------------------|--|
| Automatic delay after alarm | Autom. Verzög.            |  |
| Wind extension block        | Windausfahrsp.            |  |
| Time open                   | Zeit - Öffnen             |  |
| Outdoor temperature block   | Außentemp. Sp.            |  |
| Time/night closure          | Zeit-/Nachsch.            |  |
| Heat protection             | H <mark>itzeschutz</mark> |  |
| Pyranometer                 | Pyranometer               |  |
| Rain automation             | Regenautomatik            |  |
| Interior temperature lock   | Innentemp. Sp.            |  |
| Shading because of the sun  | Helligkeit                |  |
| No automation active        | keine Automat.            |  |

Fig.4.25(11)Facades\_Text that are output with object"Facade X channel state text"



Texts that are output with object "Façade X channel status bit text"

| Block automation using communication object | Auto. Sperre   |
|---------------------------------------------|----------------|
| Wind extension block status                 | Windausfahrsp. |
| Wind extension block status                 | windausianisp. |
| Wind alarm status                           | Windalarm      |
| Rain alarm status                           | Regenalarm     |
| Rain automation status                      | Regenautomatik |
| Frost alarm status                          | Frostalarm     |
| Safety status                               | Sicherheit     |
| Time open status                            | Zeitöffnen     |
| Outdoor temperature block status            | A-temp Sperre  |
| Night closure status                        | Nachtschließen |
| Timed closure status                        | Zeitschließen  |
| Heat protection status                      | Hitzeschutz    |
| Pyranometer status                          | Pyranometer    |
| Indoor temperature<br>blocking status       | I-Temp Sperre  |
| Sun shining on façade Status                | Sonne auf Fass |
| Sun bright, short retraction delay status   | Hellig. kurz   |
| Sun bright, long<br>retraction delay status | Hellig. lang   |

Fig.4.25(12)Facades\_Text that are output with object"Facade X channel state bit text"

Parameter: "Use facades"

This parameter is used to set whether use facades.

Options:

No

Yes



Parameters as follow are visible when "use facades" is selected "yes".

Parameter: "Use simulation objects"

This parameter is used to set whether use simulation objects.

Options:

No

Yes

During simulation, no times(delays,etc) are used.

Only retraction delay in the automatic solar protection is 10 seconds for simulation.

Parameter: "Use facade 1/.../12"

This parameter is used to activate the required facades individually in order to load the menus for the safety and automation functions.

Options:

No

Yes

### **General settings**

### Maintain the

Parameter: "threshold values received via communication objects"

Set, in which cases threshold values received are to be kept per object.

Options:

Not

After power supply restoration

After power supply restoration and programming

Note: The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).



### Live monitoring

### Parameter: "Use wind and rain object monitoring

2h

If the functionality of the wind and rain sensors is to be checked, use wind and rain object monitoring. If data is not regularly being received from the sensors, a defect is assumed and the corresponding alarm is triggered.

Options:

No
Yes

——Parameter "Monitoring period"

This parameter is visible when previous parameter is selected "yes".

This parameter is used to set the monitoring period.

Options:

5sec
10sec
...
1h

Note: Independently of live monitoring, the measured values for wind, outdoor temperature and global radiation (pyranometer) are monitored for changes. After 48 hours without any change in the measured values a defect is assumed and the corresponding function is set to alarm or block. No settings are required for this.

### Wind and rain alarm:

Set the automation block for wind and rain alarm. Please observe, that this block begins after the end of the wind or rain alarm and is only valid for automation. It avoids frequent extension and retraction during rapidly changing weather conditions. Manual operation is again possible directly after the end of the alarm.



arameter: "Preset of the automation blocking duration per"

"Automation clocking duration after wind and rain alarm(in minutes)"

The duration of the blocking can be specified by parameter or received as an object via the bus.

Options: Parameter/Object

Options: 0...360

Parameters as follow are visible when "Preset of the automation blocking duration per" is selected "object".

Parameter: "Minimum automation blocking duration

Parameter: "Maximum automation blocking duration

Parameter: "Blocking duration increment"

When specifying the blocking duration by object the minimum and maximum blocking duration and the increment for the change to the parameter are also defined.

Options: 0...360

Options: 0...360

Options: 0...50

### Rain automation:

For external shades either a rain alarm or a rain automation can be set which have opposite functions. The selection is made in the chapter 4.25.1 facade X: Function, safety.

The rain alarm protects the shading against getting wet. The rain automation ensures that the shading is, under certain conditions, extended during rainfall. The curtain can thus be cleaned by natural means. Please observe the specifications from the manufacturer of the curtain and set the rain alarm or automation accordingly.

Rain alarm: Shading is retracted as soon as precipitation is signalled and is blocked during the precipitation.



Rain automation: Precipitation is only considered in preset periods. A rain position is approached.

The extension delay during precipitation can be set.

Parameter "Preset of extension delay for rain automation per"

Parameter "Extension delay on rain automation(in minutes)"

If a rain automation has been set for the shading, then the extension delay can be specified directly via parameter or received as an object via the bus.

Options: Parameter/Object

Options: 1...120

### Night

Parameter "Specify the threshold value for night-time, based on"

Parameter "Night is detected below (in Lux)"

Set the night threshold value. The threshold value can be specified directly by parameter or received as an object via the bus. The device's internally measured value is used for brightness. The switching delay between day and night is 1 minute.

Options: Parameter/Object

Options: 1...200

Parameters as follow are visible when "Preset of extension delay for rain automation per" is selected "object".

Parameter "Minimum adjustable value (in Lux) for twilight"

'arameter: "Maximum adjustable value (in Lux) for twilight"

Parameter: "Step size (in Lux)"

When specifying the threshold value by object the minimum and maximum values that can be set for twilight values and the increment for the change are also defined.

Options: 1...200



Options: 1...200

Options: 1...10

### **Outdoor temperature**

For frost alarm, heat protection and outdoor temperature block

Parameter "Measurement of

Define which outdoor temperature value for frost alarm, heat protection and outdoor temperature block are to be used. The device's own internal values or a value received via a communication object can be used.

Options:

Internal sensor

**Communication object** 

Note: After 48 hours without any change in the value a defect is assumed and the frost alarm, heat protection and outdoor temperature block are activated.

### **Heat protection**

Parameter: "Preset of the threshold value for heat protection per".

Parameter: "Temperature (in 0.1°C)"

Parameter "Switching distance (hysteresis) (in 0.1°C)"

Define the outdoor temperature for the heat protection. The threshold value can be specified directly by parameter or received as an object via the bus.

Options: Parameter/Object

Options: 100...500

Options: 10...200



Parameters as follow are visible when "Preset of the threshold value for heat protection per" is selected "object".

```
Parameter "Minimum adjustable temperature(in 0.1°C)"

Parameter "Maximum adjustable temperature(in 0.1°C)"

Parameter "Step size (in 0.1°C)"
```

When specifying the threshold value by object the minimum and maximum values that can be set for temperature and the increment for the change are also defined.

Options: 100...500

Options: 100...500

Options: 1...10

### Frost alarm

This frost alarm is only used within the facade controller and is independent of the general parameter Frost alarm.

```
Parameter "Preset of frost protection values per"

Parameter "outdoor temperature of (0.1 °C)"

Parameter "(in hours)"
```

The frost alarm is active in cold outdoor temperatures in combination with precipitation. The conditions can be specified directly by parameter or received as an object via the bus.

Options: Parameter/Object

Options: -200...300

Options: 1...10

Parameters as follow are visible when "Preset of frost protection value per" is selected "object".



### Start/End frost alarm if an

Parameter "Minimum adjustable ext. temperature(in 0.1°C)"

Parameter "Max. Variable external temperature (in 0.1°C)"

Parameter "Minimum adjustable end time (in hours)"

Parameter "Maximum variable start time (in hours)"

Parameter "Temperature increment (in 0.1°C)"

When specifying the conditions by object the minimum and maximum temperature and time values that can be set and the temperature increment for the change are also defined.

Options: -200...300

Options: -200...300

Options: 1...10

Options: 1...10

Options: 0...255

### **Facades status output**

Information on the various possibilities for the status output can be found in chapter 4.25.1.8 Status output . In principal the status output is a singular function, but, in compact form, possible for singular and for all facades possible. For the output in a compact form pre-sets are made here and the output texts defined.

Parameter "Analysis of the status release object"

Parameter: "Value up to 1<sup>st</sup> communication"

Set which value in the status release object for all facades means active respectively inactive.

Options: 1=activated | 0=deactivated/0=activated | 1=deactivated

Options: 0/1



### Texts that are output with object "Facade X channel state text"

For the status output the status bit selected (i.e. the function) and, if applicable, also the active facade is output. As a result, it can easily be visualised which status is just being issued. The texts can be adapted individually and should, as a maximum, be 14 characters long.

```
Parameter "Safety"
Parameter: "Automatic delay after alarm"
Parameter "Wind extension block
Parameter
            "Time open
            Outdoor temperature block
Parameter
Parameter:
            'Time/night closure
            "Heat protection
            "Pyranometer"
Parameter "Rain automation"
            "Interior temperature lock"
            "Shading because of the sun"
<sup>9</sup>arameter
            "No automation active
```

### Texts that are output with object "Facade X channel status bit text"

```
Parameter "Block automation using communication object"

Parameter "Wind extension block status"

Parameter "Wind alarm status"
```



| Parameter "Rain alarm status"                         |
|-------------------------------------------------------|
| Parameter "Rain automation status"                    |
| Parameter "Frost alarm status"                        |
| Parameter "Safety status"                             |
| Parameter: "Time open status"                         |
| Parameter "Outdoor temperature block status"          |
| Parameter "Night closure status"                      |
| Parameter "Time closure status"                       |
| Parameter "Heat protection status"                    |
| Parameter: "Pyranometer status"                       |
| Parameter "Indoor temperature blocking status"        |
| Parameter: "Sun shining on facade status"             |
| Parameter "Sun bright, short retraction delay status" |
| Parameter "Sun bright, long retraction delay status   |

## 4.25.1 Parameter window "Facade 1/.../12: Function, safety"

Set the basic and safety relevant functions for the facade.

| Name                                                          | Fassade 1                                                                                       |   |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---|
| Use simulation objects                                        | No Ves                                                                                          |   |
| Does the screen have slats?                                   | No Yes                                                                                          |   |
| Evaluation of the blocking object  Blocking object value      | 0 1 = block   0 = Release<br>0 = block   1 = Release                                            |   |
| before 1. communication                                       |                                                                                                 |   |
| Action after locking                                          | <ul> <li>Execute the last automatic command</li> <li>Wait for next automatic command</li> </ul> |   |
| Combine wind, frost and rain alarm to safety object?          | ○ No ○ Yes                                                                                      |   |
| Transmission behaviour for safety and alarm status objects    | on change to 1 and periodically                                                                 | • |
| Send cycle                                                    | 10 sec                                                                                          | * |
| Transmission behaviour for movement and slat position objects | on change on change and periodically                                                            |   |
| Send cycle                                                    | 10 sec                                                                                          | * |
| Maintain the                                                  |                                                                                                 |   |
| threshold values received via communication objects           | not                                                                                             | • |

Fig.4.25.1(1)



### Wind alarm

| as wind alarm per threshold value | •                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |
| ○ No ○ Yes                        |                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |
| No Yes                            |                                                                                                                                                                                                                                                                                                                                                                                                            |
| O No Yes                          |                                                                                                                                                                                                                                                                                                                                                                                                            |
| O No Yes                          |                                                                                                                                                                                                                                                                                                                                                                                                            |
| O No Yes                          |                                                                                                                                                                                                                                                                                                                                                                                                            |
| O No Yes                          |                                                                                                                                                                                                                                                                                                                                                                                                            |
| O No Yes                          |                                                                                                                                                                                                                                                                                                                                                                                                            |
| O No Ves                          |                                                                                                                                                                                                                                                                                                                                                                                                            |
| O No Yes                          |                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | <ul> <li>No Yes</li> </ul> |



| T I I I I I I I I I I I I I I I I I I I                                            | THOUSE HOLD WELL      | ther otatio |
|------------------------------------------------------------------------------------|-----------------------|-------------|
| Threshold value setpoint using                                                     | Parameter O Object    |             |
| Wind alarm threshold value<br>(in 0.1 m/s) retracts curtain.                       | 80                    | <b>‡</b>    |
| valid till 1st communication                                                       |                       |             |
| Minimum threshold value (in 0.1 m/s)                                               | 20                    | *           |
| Maximum threshold value<br>(in 0.1 m/s)                                            | 120                   | *           |
| Step size 0.5 m/s                                                                  |                       |             |
| Wind alarm delay (in s)                                                            | 2                     | <b>.</b>    |
| Automation blocking duration after wind alarm is adjustable in the "Façades" menu. |                       |             |
| Fig                                                                                | .4.25.1(2) Wind alarm |             |
| Frost alarm                                                                        |                       |             |
| use                                                                                | ○ No ○ Yes            |             |
| Note: If there has been no measurement change at the outdoor                       |                       |             |
| temperature sensor within 48 hours, frost alarm will be triggered.                 |                       |             |
| Frost alarm parameters adjustable in the "Façades" menu                            |                       |             |

Fig.4.25.1(3) Frost alarm



# K-BUS<sup>®</sup> KNX/EIB KNX GPS Weather Station Pro

| use                                            | as rain automation |  |
|------------------------------------------------|--------------------|--|
| Extension delay is set in the<br>Façades menu. |                    |  |
| Use rain automation                            |                    |  |
| with week time switch                          |                    |  |
| Period 1                                       | O No O Yes         |  |
| Period 2                                       | No Yes             |  |
| Period 3                                       | O No Yes           |  |
| Period 4                                       | O No Yes           |  |
| Period 5                                       | O No Yes           |  |
| Period 6                                       | O No Yes           |  |
| Period 7                                       | O No Ves           |  |
| Period 8                                       | O No Ves           |  |
| Period 9                                       | O No Yes           |  |
| Period 10                                      | O No Yes           |  |
| Period 11                                      | O No Yes           |  |
| Period 12                                      | O No Yes           |  |
| Period 13                                      | O No Yes           |  |
| Period 14                                      | O No Yes           |  |
| Period 15                                      | O No Yes           |  |
| Period 16                                      | O No Yes           |  |
| Period 17                                      | O No Yes           |  |
| Period 18                                      | No Yes             |  |
| Period 19                                      | O No Yes           |  |



Parameter "Use simulation objects"

| Period 20                                      | O No Yes                                                            |          |
|------------------------------------------------|---------------------------------------------------------------------|----------|
| Period 21                                      | O No Yes                                                            |          |
| Period 22                                      | O No Yes                                                            |          |
| Period 23                                      | O No Yes                                                            |          |
| Period 24                                      | No Yes                                                              |          |
| with calendar time switch                      |                                                                     |          |
| Period 1 Sequence 1                            | O No Yes                                                            |          |
| Period 1 Sequence 2                            | O No Yes                                                            |          |
| Period 2 Sequence 1                            | O No Yes                                                            |          |
| Period 2 Sequence 2                            | O No Yes                                                            |          |
| Period 3 Sequence 1                            | O No Yes                                                            |          |
| Period 3 Sequence 2                            | O No Yes                                                            |          |
| Period 4 Sequence 1                            | O No Yes                                                            |          |
| Period 4 Sequence 2                            | O No Yes                                                            |          |
| Movement position (in %)                       | 0                                                                   |          |
| Slat position (in %)                           | 0                                                                   | * ·      |
| Analysis of the rain automation release object | 1 = activated   0 = deactivated     0 = activated   1 = deactivated |          |
| Value up to 1st communication                  | 0 0 1                                                               |          |
| Rain automation follow-up time in minutes      | 5                                                                   | <b>‡</b> |

Fig.4.25.1(4) Rain

| Parameter "Na | ıme"            |     |  |  |
|---------------|-----------------|-----|--|--|
| Enter a nan   | ne for the faca | de. |  |  |



# **K-BUS**<sup>®</sup> KNX/EIB KNX GPS Weather Station Pro

This parameter sets whether use simulation objects. Simulation help when testing the settings that have been made. For this observe the chapter 4.25.1.7 Simulation.

Options:

No

Yes

Parameter "Does the screen have slats?"

For shutters and slat blinds use the setting - shade has slats. As a result, further settings, especially for slats, are possible.

Options:

No

Yes

Parameter: "Evaluation of the blocking object"

This parameter is used to set what a 1 or 0 at the block entry means.

Options:

1=block | 0=release

0=block | 1=release

Parameter "Blocking object value before 1: communication"

An object value up to the 1st communication is specified here.

Options:

0

1

Parameter: "Action after locking"

This parameter is used to set the action after locking.

Options:

Execute the last automatic command



### Wait for next automatic command

| Par  | ameter "Con               | nbine wind, frost and rain alarm to safety object?"                                       |
|------|---------------------------|-------------------------------------------------------------------------------------------|
|      | This parame               | ter is used to set whether combine wind, frost and rain alarm to safety object.           |
|      | Options:                  |                                                                                           |
|      |                           | No                                                                                        |
|      |                           | Yes                                                                                       |
| Par  | ameter "Trai              | ismission behaviour for safety and alarm status objects"                                  |
|      | This parame               | eter is used to set the transmission behavior for safety and alarm status sent to the     |
| bus  |                           |                                                                                           |
|      | Options:                  |                                                                                           |
|      |                           | On change                                                                                 |
|      |                           | On change to 1                                                                            |
|      |                           | On change to 0                                                                            |
|      |                           | On change and periodically                                                                |
|      |                           | On change to 1 and periodically                                                           |
|      |                           | On change to 0 and periodically                                                           |
|      | ——Paramet                 | er "Send cycle"                                                                           |
|      | This parame               | eter is visible when previous parameter is selected "On change and periodically" , "On    |
| cha  | nge to 1 and <sub>l</sub> | periodically" and "On change to 0 and periodically".                                      |
|      | When sendir               | ng periodically, the safety and alarm status is sent on the bus in a fixed cycle that can |
| be s | set here.                 |                                                                                           |
|      | Options:                  |                                                                                           |
|      |                           | 5sec                                                                                      |
|      |                           | 10sec                                                                                     |
|      |                           |                                                                                           |



1.5h

2h

Parameter "Transmission behaviour for movement and slat position objects"

This parameter is used to set the transmission behavior for movement and slat position.

Options:

On change

On change and periodically

---Parameter "Send cycle"

This parameter is visible when previous parameter is selected "On change and periodically".

When sending periodically, the movement and slat position is sent on the bus in a fixed cycle that can be set here.

Options:

5sec

10sec

•••

1.5h

2h

### Maintain the

Parameter "threshold values received via communication objects"

Set, in which cases threshold values received are to be kept per object.

Options:

Not

After power supply restoration

After power supply restoration and programming

Note:



- 1. This setting also affects the release objects of the facade automation (opening time, time and night closing, heat protection, pyranometer, rain automation, indoor temperature block, outdoor temperature block and solar protection automation).
- 2. The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

### **Priorities:**

The functions of the facade are arranged according to their priorities. First named have higher priority. 1. Wind, 2. Frost, 3. Rain.

### Wind alarm

If the wind threshold values are exceeded, a wind alarm can be triggered, i.e. the shade is retracted.

If the wind extension block is active, the curtain can no longer be extended (not even by manual commands). If the curtain has already been extended, it remains in its position.

If the wind alarm is used, then, as a precaution, the alarm is activated, if over a period of 48 hours no change in the measured value has been recorded at the relevant wind sensor.

### Parameter "use"

Set with what the wind alarm and, if desired, wind extension blocking is to be defined.

### Options:

No

As wind alarm per threshold value

As wind alarm per bit object

As wind alarm and ext.blocking per TVL

As wind alarm per TVL/ext.blocking per bit obj.

As wind alarm per bit obj./ext.blocking per TVL



### As wind alarm/wind ext.blocking per bit obj.

If alarm or extension block per bit object is defined, no further settings are required. The wind alarm is defined externally and the alarm or block information is received by the weather station as a 1-bit object. The duration of blocking by the automation after a wind alarm is set in the chapter 4.25 facades (Wind and rain alarm)

If Alarm or extension block per threshold value is defined, then set which sensors are relevant for this. The wind value measured internally in the device can be used, but also the values of the external wind communication objects assigned to the facades. With several sensors, only one must exceed the threshold value in order for the alarm/ block to become active.

In addition, a delay can be specified per parameter. It specifies the time that elapses from the point at which the threshold value is exceeded until the wind alarm or the wind extension block is triggered. If the value falls below the threshold value, a fixed holding time of 5 minutes elapses before the wind alarm / the wind extension block is deactivated again. If the threshold value is exceeded within 5 minutes, the holding time starts again from the beginning.

After the five-minute holding time has elapsed, the automatic block starts. It is set in the "facades" menu (see Wind and rain alarm). Manual driving is possible again immediately after the holding time has elapsed.

Parameters as follow are visible when "Use" is selected "As wind alarm per threshold value", "As wind alarm and ext.blocking per TVL" and "As wind alarm per bit obj./ext.blocking per TVL".

Note: If there has been no measurement change at the activated. Wind sensors within 48 hours, wind alarm will be triggered. Use the following wind sensors

"Internal sensor measurement"

This parameter is used to set whether use internal sensor measurement.

Options:

No



Yes

```
Parameter "Facade wind 1/.../12"
```

This parameter is used to set facade wind 1/.../12.

Options:

No

Yes

Parameter: "Threshold value setpoint using

Select whether the threshold value is to be specified per parameter or via a communication object.

Options:

**Parameter** 

**Object** 

```
Parameter "wind alarm threshold value (in 0.1 m/s) retracts curtain."
Parameter "wind alarm delay (in s)"
```

When the threshold value per parameter is specified, then the value and delay time are set. Options:

### 0...255

```
Parameter "wind alarm threshold value (in 0.1 m/s) retracts curtain."

Parameter "Minimum threshold value (in 0.1 m/s)"

Parameter "Maximum threshold value (in 0.1 m/s)"

Parameter "wind alarm delay (in s)"
```

When the threshold value per communication object is specified, then the starting value, minimum and maximum threshold value and delay time are set.

Options: 0...255

Frost alarm

# **K-BUS**<sup>®</sup> KNX/EIB KNX GPS Weather Station Pro

Note: If the frost alarm is used, then, as a precaution, the alarm is activated, if over a period of 48 hours no change in the measured value has been recorded at the relevant outdoor temperature sensor.

Parameter "use"

Set whether the frost alarm is to be used for this facade. Further parameters for the frost alarm are set in the chapter 4.25 facades (see Frost alarm).

Options:

No

Yes

### Rain

In the event of precipitation either a rain alarm can be triggered for the facade, i.e the shade is retracted and blocked, or a rain automation is executed. The rain automation moves to a certain position and is valid for the periods set. At other times with "rain automation" set the shade does not react to precipitation.

Further parameters for the rain automation are set in the chapter 4.25 "facades" (Rain automation). Rain alarm does not have any extension delay.

Note: Within the automation functions the rain automation has a low priority. To display the sequence, rain automation is also listed in the facade X automation without the settings being possible.

Parameter "use'

Set whether precipitation should trigger the rain alarm or the rain automation.

Options:

No

As rain alarm

As rain automation



Parameters as follow are visible when "Use" is selected "As rain automation".

```
Parameter "Period 17.../24"
Parameter "Period 172/3/4 Sequence 172"
```

If in the event of precipitation, the rain automation is triggered, then set in which periods of the week and the calendar-timer, the rain movement position is to be travelled to. The periods are defined in the menu "week timer" or "month timer" (see chapter 4.27 Weekly timer and chapter 4.28 Calendar timer).

Options: No/Yes

```
Parameter "Movement position (in %)"
Parameter "Slat position (in %)"
```

Then also set the movement and slat position.

Options: 0...100

Parameter "Analysis of the rain automation release object"

Parameter "Value up to 1° communication"

Define the value of the release object for the rain automation. Using the release object, the rain automation can be deactivated at short-notice.

Options: 1=activated | 0=deactivated/0=activated | 1=deactivated

Options: 0/1

Parameter: "Rain automation follow-up time in minutes"

Define the follow-up time The follow-up time is the delay time after the end of the precipitation warning.

Options: 1...120



### 4.25.1.1 Classifying the facades for the control unit

The control options for shadings are Facade-related functions.

Most buildings have 4 facades. In principle the sun protection of each facade should be controlled separately, as shown in Fig1.

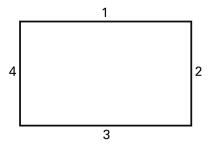
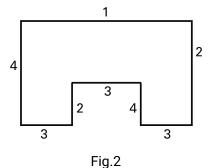




Fig.1

Even in buildings with a U-shaped layout only 4 facades have to be controlled differently, as several have the same alignment, as shown in Fig2.



In buildings with an asymmetrical layout the facades with a non-right-angled orientation(2,3,5) and facades that are set back(6) must be controlled separately, as shown in Fig3.

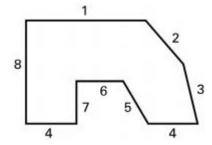



Fig.3



If a building has more than 12 Facades, the deployment if another weather station is recommended; particularly as this also makes it possible to measure the wind speed in another location.

When there are several buildings, wind measurement should take place separately for each building(e.g. with additional wind sensor), as depending on the positions of the buildings in relation to one another, different wind speeds may occur.



### 4.25.1.2 Orientation and inclination of the Facade

Alignment and slant of the facade are needed for the shadow edge tracking and the slat auto-guide.

Top view

The facade orientation corresponds to the angle be tween the North-south axis and the facade vertical. The angle here is measured in a clock wise direction, as shown in Fig.1.

The facade orientations result as follows:

Facade 1:  $\alpha$  Facade 2:  $\beta = \alpha + 90^{\circ}$ 

Facade 3:  $y=\alpha+180^{\circ}$  Facade 4:  $\delta=\alpha+270^{\circ}$ 

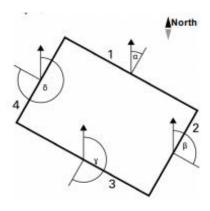



Fig.1

Example: The building in the illustration is turned  $\alpha$  = 30° to the east i.e. the Facade alignment is 30°, 120°, 210° and 300°.

Side view: if a facade surface is not oriented vertically, this must be taken into account. A forward inclination of the facade is counted as a positive angle; a back wards inclination(as in the picture) as a negative angle. This also allows a sunshade of a window built into a sloping roof surface to be controlled according to the current position of the sun, as shown in Fig.2.



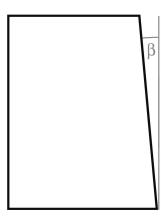



Fig.2

If a Facade is not a flat surface, but rather arched or bent, it must be subdivided into several segments that are controlled separately.

Remember, when setting a facade inclination greater than 0° also to adjust the height of the sun at which shading is to take place.



### 4.25.1.3 Shadow edge tracking and slat tracking

### Shadow edge tracking

With shadow edge tracking the sunshade is not moved down fully; instead, it is moved only so far that the sun can still shine a configurable distance (e.g. 50 cm) into the room. This allows the room user to look outside through the lower part of the window, and plants which may be on the window ledge to be exposed to the sun.

Shadow edge tracking can only be used with a sunshade which is moved from the top downwards (e.g. shutters, textile shades or blinds with horizontal slats). This function cannot be used with sunshades which are pulled in front of a window from one or both sides.

### Slat tracking

During slat tracking the horizontal slats of shutters are not fully closed but rather automatically adjusted according to the position of the sun so that it cannot shine directly into the room. Diffuse daylight can still enter the room through the slats and contribute to dazzle-free room lighting. Using slat tracking with an external shutter, the entry of warm air into the room through sunshine can be reduced and, at the same time, energy costs for lighting the room can be reduced.

### Using shadow edge tracking and slat tracking

Sunshade when the position of the sun is high: The sunshade is only partially closed and automatically moved down only enough so that the sun cannot shine further into the room than specified via the maximum permitted penetration depth. The slats can be set almost vertically without the sun shining directly into the room, as shown in Fig.1.



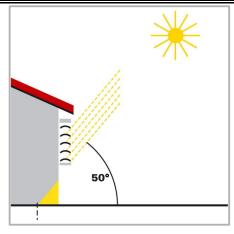



Fig.1

Sunshade when the sun is in a central position: The sunshade is automatically moved down only far enough so that the sun does not exceed the maximum permitted penetration depth in the room. The slats are automatically closed further, so that the sun can not shine directly into the room. Despite that diffuse daylight can still reach the room and so contribute to the room lighting, as shown in Fig.2.

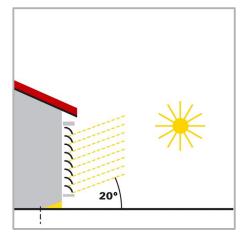



Fig.2

Sunshade when the position of the sun is low: The sunshade is automatically moved down almost fully, so that the sun does not shine too far into the room. The slats are automatically closed further, so that the sun does not shine in directly, as shown in Fig.3.



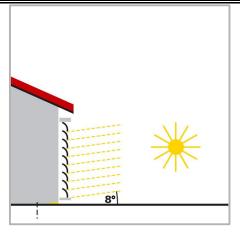
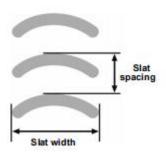


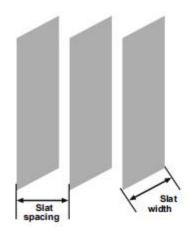

Fig.3



### 4.25.1.4 Slat type and determination of width and spacing


With slat tracking, a distinction is made between a sunshade or glare protection with horizontal slats and one with vertical slats.

A sunshade with horizontal slats (e.g. external shutter) is typically moved downwards from the top. By contrast, an internal glare protector often consists of thin strips of material (vertical slats), which can be rotated around 180° and are pulled out from one or both sides of the window.


Both types of slat can be adjusted by the KNX GPS weather station Pro so that no direct sunlight falls into the room, but as much diffuse daylight as possible does.

In order for slat tracking to set the slats correctly, their width and spacing from one another must be known.

Horizontal slats



Vertical slats





### 4.25.1.5 Slat position for horizontal slats

The slat angle at 0% move command and at 100% move command must, during commissioning, be aligned to the pre-settings of the product parameters of the KNX GPS Weather Station Pro, and, if necessary, corrected, so that the slat guide on the facade works properly.

The drive used for the shutters defines whether this adjustment can take place almost continuously during slat tracking in many small steps (as with SMI drives, for example) or whether it is only possible in a few large steps (as with most standard drives).

### Slat position at 100%

After moving to the 100% slat position the slats form an angle with the vertical. This angle must be entered in the parameter "Slat angle (in °) after slat move command 100%". The default setting is 10°.

Example of a typical slat position at move command 100%(angel α approx 10°), as shown in Fig1.

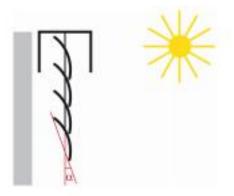



Fig.1



# Slat position at 0%

After moving to the 0% slat position the slats form another angle with the vertical. This must be entered in the parameter "Slat angle (in °) after slat move command 0%". The default setting is 90°.

The possible angle at slat position 0% depends on the mechanics of the blind and the actuator.

Example 1 of a typical slat position at move command 0%(angel α approx 90°), as shown in Fig2.

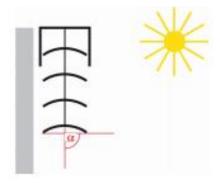



Fig.2

Example 2 of a typical slat position at move command 0%(angel  $\alpha$  approx 160  $^\circ$  ), as shown in Fig3.

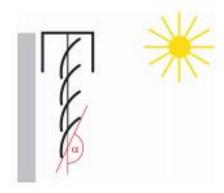



Fig.3

By setting the actual angle at 0% and 100% slat position the facade controller can convert the optimal slat angle for the actual sun position into a % command and transmit this to the actuator.



# 4.25.1.6 Slat position for vertical slats

The slat angle at 0% move command and at 100% move command must, during commissioning, be aligned to the pre-settings of the product parameters of the KNX GPS Weather Station Pro, and, if necessary, corrected, so that the slat guide on the facade works properly

# Slat position at 100%

After moving to the 100% slat position the slats form an angle with the direction of movement. This angle must be entered in the parameter "Slat angle (in °) after slat move command 100%". The default setting is 10°.

The angle  $\alpha$  is, seen from the outside, always measured to the left.

Example of a slat position at move command 100%(angel α approx 10°), as shown in Fig1.

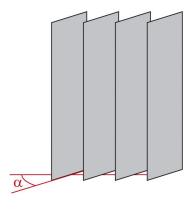



Fig.1

# Slat position at 0%

After moving to the 0% slat position the slats form another angle with the direction of movement. This must be entered in the parameter "Slat angle (in °) after slat move command 0%". The default setting is 90°.

Example 1 of a slat position at move command 0%(angel α approx 90°), as shown in Fig2.



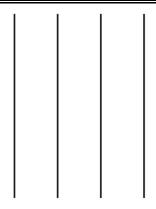



Fig.2

Example 2 of a slat position at move command 0% (angel  $\alpha$  approx  $130^{\circ}$  ), as shown in Fig3.

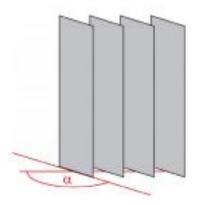



Fig.3

The possible angle utilisation (difference between slat position 100% and 0%) depends on the mechanics of the blind and the actuator. Take care that the angle utilisation is not limited by the configuration of the actuator.

By setting the actual angle at 0% and 100% slat position the facade controller can convert the ideal slat angle for the actual sun position into a % command and transmit this to the actuator.



### 4.25.1.7 Simulation

Simulation objects help when testing the settings that have been made for facades. They are activated in the setting area facades. By sending various values to the simulation objects number 656 to 671 different weather conditions and times of day can be tested. With the object670 "facade simulation reset (1:Reset)" you can delete all the simulation values that were set.

# **Activating simulation**

In order to start the simulation, the simulation object for the facade must be activated. For facade 1, for example, the object is "672 facade 1 simulation (1: On | 0: Off) Set the value of this object to 1 to start the simulation for facade 1.

The facade and all other subordinate functions must be released (no active blocks) so that the simulated positions can be output.

When the simulation is activated the retraction delay (movement delay LONG) is set to 10 seconds. All other delay times are set to 0. All output objects of the relevant facade adapt their state to the values of the input objects for the simulation. The objects for normal operation are ignored.

# **Ending the simulation**

Set the value of the object "facade 1 simulation (1:on | 0:off)" to 0 to end the simulation for facade 1.

When deactivating the simulation, it is possible that when an automation is performed for the first time (e.g. sun automation) that the delay times from the simulation are still used. All output objects of the relevant facade adapt their state to the values of the input objects for normal operation. The simulation objects are once again ignored.

The most recently received values for the simulation objects and also for the objects for normal operation are retained when switching between simulation and normal mode. No reset takes place.

This means that when the simulation is ended the last used value for normal operation is applied.



# Calculation of the sun position for the simulation

During the simulation it is possible to have the sun position, dependent on the simulation object for date and time, sent to the bus. In order that this functions, a location must be set in the product parameters or the location received via GPS. As long as the location is unknown sun positions are not calculated in the simulation.



# 4.25.1.8 Status output

The status of the automation functions of the facade controller can be used for visualisation or other bus functions. The device offers various possibilities for the status output.

# **Object status**

A status object is available for every function of the automatic.

For the rain alarm on facade 1, for example, it is the object No. 685 "facade 1 rain alarm status".

### Status of all facades

The status of all facades and their automatic functions can be issued in a compact form via an automatic status-bit object. For this purpose, a status of safety, automatic delay after an alarm, wind extension block, timed opening, timed/night closure, heat protection, pyranometer, rain automation, indoor temperature block, outdoor temperature block, shading because of the sun or automatic status, can be issued for every facade. Only the condition of one function of one facade is always issued. Using the object 655 one can switch to the next function (status-bit) and/or with the object 650 to the next facade.

The objects 648 to 655 are used for the compact output.

| No. | Identification               | Range     | Function/Info                                     |  |
|-----|------------------------------|-----------|---------------------------------------------------|--|
| 648 | facade X channel Status      | Activatio | Set to "active" in order to use the status output |  |
|     | output                       | n         |                                                   |  |
|     |                              |           |                                                   |  |
| 649 | facade X channel Name        | facade    | Output of the facade name (when changing          |  |
|     |                              |           | facades).                                         |  |
|     |                              |           |                                                   |  |
| 650 | facade X channel (1:+   0:-) | facade    | Change to the next/previous facade.               |  |
|     |                              |           |                                                   |  |
| 651 | facade X channel Status text | Status    | Output of the condition of the selected           |  |
|     |                              |           | status-bit as text.                               |  |



| 652 | facade X channel Status-bit text                  | Status | status-bit (when changing the status bit).                                                                                                                           |
|-----|---------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 653 | facade X channel Status-bit condition             | Status | Output of the selected automatic status bit.                                                                                                                         |
| 654 | facade X channel Delay                            | Status | Displaying the delay time for the selected status-bit.  Some automation functions have delay times that must first be run through before the status-bit is (re-)set. |
| 655 | facade X channel Status-bit selection (1:+   0:-) | Status | Output of the automatic status-bit                                                                                                                                   |

### Status of a facade

The compact form of the status output described for all facades can also be performed for single facades. For this, the objects 731 to 736 are used for facade 1, for the other facades the objects named accordingly for the desired facade. The status output corresponds to that for all facades, only that here the objects for changing facades and the text object for the output of the name of the facade are missing. The text output with the object 733 "facade 1 channel status-bit text" is also taken from the table Texts for object "Facade X channel status bit text"

# 4.25.2 Parameter window "Facade 1/.../12: Automation"

Set automation for the facade

### **Priorities**

The functions of the facade are arranged according to their priorities. First named have higher priority. 1. Time open, 2. Time and night closure, 3. Heat protection, 4. Pyranometer 5. Rain automation 6. Interior temperature block, 7. Outdoor temperature block, 8. Solar protection automation.

Timed opening

# KNX/EIB KNX GPS Weather Station Pro

# No Ves use used with week time switch Period 1 No Ves Period 2 O No Yes Period 3 O No Yes Period 4 O No Yes Period 5 O No Yes Period 6 O No Yes Period 7 O No Yes Period 8 O No Yes Period 9 O No Yes Period 10 O No Yes Period 11 O No Yes Period 12 O No Yes Period 13 No Yes Period 14 No Yes Period 15 O No Yes Period 16 O No Yes Period 17 O No Yes Period 18 O No Yes Period 19 No Yes

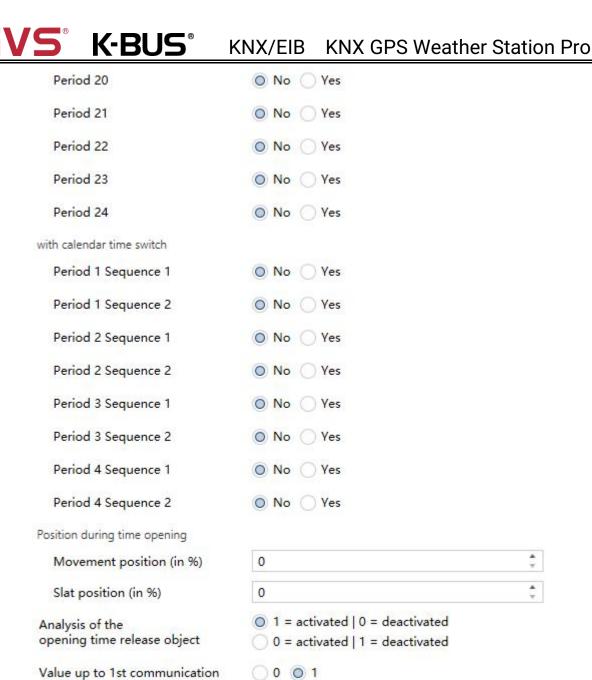



Fig.4.25.2(1) Timed opening



# Timed and night closure

| -                     |            |
|-----------------------|------------|
| use                   | O No O Yes |
| Use timed closure     | No Yes     |
| used                  |            |
| with week time switch |            |
| Period 1              | O No Yes   |
| Period 2              | No Yes     |
| Period 3              | O No Yes   |
| Period 4              | O No Yes   |
| Period 5              | O No Yes   |
| Period 6              | O No Yes   |
| Period 7              | No Yes     |
| Period 8              | No Yes     |
| Period 9              | No Yes     |
| Period 10             | No Yes     |
| Period 11             | O No Yes   |
| Period 12             | O No Yes   |
| Period 13             | O No Yes   |
| Period 14             | O No Yes   |
| Period 15             | No Yes     |
| Period 16             | O No Yes   |
| Period 17             | No Yes     |
| Period 18             | O No Yes   |

| Period 19                                 | No Yes                                                              |
|-------------------------------------------|---------------------------------------------------------------------|
| Period 20                                 | O No Yes                                                            |
| Period 21                                 | O No Yes                                                            |
| Period 22                                 | O No Yes                                                            |
| Period 23                                 | O No Yes                                                            |
| Period 24                                 | No Yes                                                              |
| with calendar time switch                 |                                                                     |
| Period 1 Sequence 1                       | No Yes                                                              |
| Period 1 Sequence 2                       | ○ No ○ Yes                                                          |
| Period 2 Sequence 1                       | O No Yes                                                            |
| Period 2 Sequence 2                       | O No Yes                                                            |
| Period 3 Sequence 1                       | O No Yes                                                            |
| Period 3 Sequence 2                       | No Yes                                                              |
| Period 4 Sequence 1                       | O No Yes                                                            |
| Period 4 Sequence 2                       | O No Yes                                                            |
| Analaysis of timed closure release object | 1 = activated   0 = deactivated     0 = activated   1 = deactivated |
| value before 1st communication            | 0 0 1                                                               |



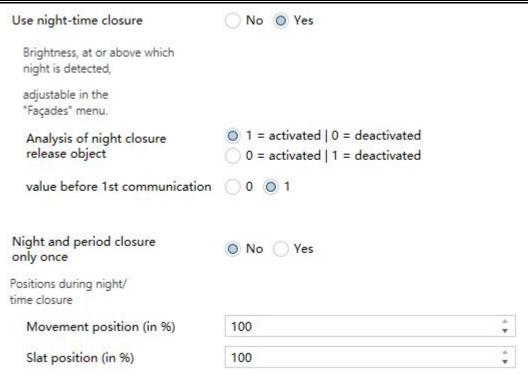



Fig.4.25.2(2) Time and night closure

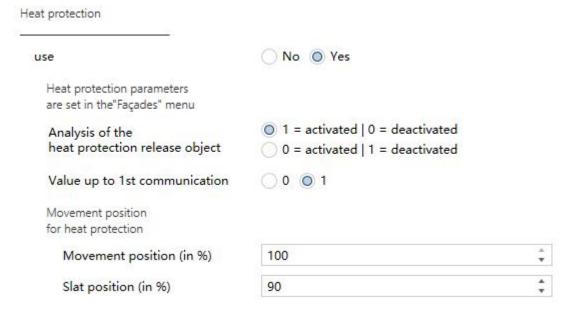



Fig.4.25.2(3) Heat protection



| Pyranometer                                          |                                                                     |          |
|------------------------------------------------------|---------------------------------------------------------------------|----------|
| use                                                  | changeable per object                                               | •        |
| Façade pyranometer 1                                 | O No Yes                                                            |          |
| Façade pyranometer 2                                 | O No Ves                                                            |          |
| Façade pyranometer 3                                 | O No Ves                                                            |          |
| Façade pyranometer 4                                 | O No Yes                                                            |          |
| Threshold value (in W/m²)<br>until 1st communication | 500                                                                 | <b>‡</b> |
| Minimum adjustable end time<br>(in hours)            | 100                                                                 | <b>‡</b> |
| Maximum variable threshold value (in W/m²)           | 2500                                                                | ÷        |
| Step size threshold value (in W/m²)                  | 50                                                                  | *        |
| Switching distance (hysteresis) threshold value in   | in percent (%) in watts/m²                                          |          |
| Threshold value hysteresis (in W/m²)                 | 400                                                                 | <b>‡</b> |
| Movement position for pyranometer                    |                                                                     |          |
| Movement position (in %)                             | 100                                                                 | ÷        |
| Slat position (in %)                                 | 90                                                                  | ÷        |
| Retraction delay in minutes                          | 5                                                                   | *        |
| Analysis of the pyranometer release object           | 1 = activated   0 = deactivated     0 = activated   1 = deactivated |          |
| Value up to 1st communication                        | 0 0 1                                                               |          |

Fig.4.25.2(4) Pyranometer

# Rain automation

If rain has been configured as rain automation,

then it has this priority



# Fig.4.25.2(5) Rain automation

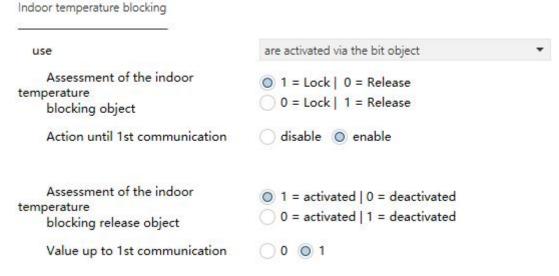
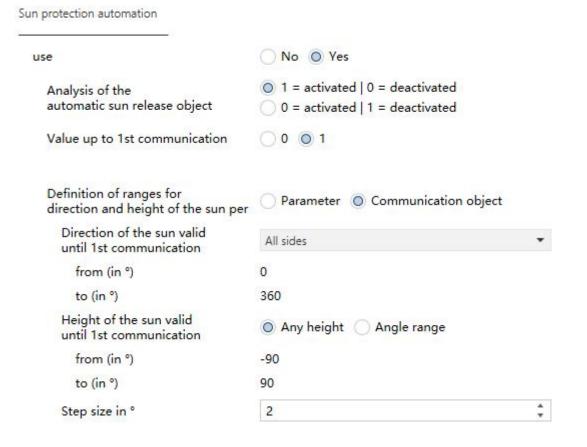




Fig.4.25.2(6) Indoor temperature blocking





| Brightness sensor selection:                            | <ul> <li>Internal sensors (maximum value)</li> <li>via communication object</li> </ul> |
|---------------------------------------------------------|----------------------------------------------------------------------------------------|
| Preset threshold value for<br>brightness per            | Parameter O Communication object                                                       |
| (Caution!! Object for<br>threshold value uses LUX)      |                                                                                        |
| Threshold value (in kLux) valid until 1st communication | 60 ‡                                                                                   |
| Minimum adjustable threshold value (in kLux)            | 20 *                                                                                   |
| Maximum adjustable threshold value (in kLux)            | 80 ‡                                                                                   |
| Step size (in kLux)                                     | 5 🕏                                                                                    |
| Switching distance (hysteresis) threshold value in      | in percent (%) in kLux                                                                 |
| Switching distance (hysteresis) (in kLux)               | 15 💠                                                                                   |



| Retraction and extension delay is stipulated by | Parameter O Object |          |
|-------------------------------------------------|--------------------|----------|
| Extension delay (in minutes)                    | 1                  | ÷        |
| valid until<br>1st communication                |                    |          |
| Minimum adjustable extension delay (in minutes) | 1                  | · v      |
| Maximum adjustable extension delay (in minutes) | 40                 | ¢        |
| Step size (in minutes)                          | 1                  | <b>‡</b> |
| Brief delay<br>(in seconds)                     | 10                 | <b>‡</b> |
| valid until<br>1st communication                |                    |          |
| Minimum short delay (in seconds)                | 1                  | *        |
| Maximum short delay (in seconds)                | 120                | *        |
| Increment (in seconds)                          | 1                  | *        |
| Retraction delay<br>(in minutes)                | 30                 | *        |
| valid until<br>1st communication                |                    |          |
| Minimum retraction delay (in minutes)           | 10                 | <b>‡</b> |
| Maximum retraction delay (in minutes)           | 240                | ÷        |
| Step size (in minutes)                          | 1                  | <b>‡</b> |

Outdoor temperature block

|        | use                                                          | changeable per object           | *        |
|--------|--------------------------------------------------------------|---------------------------------|----------|
|        | Deactivate blocking at                                       |                                 |          |
|        | Threshold value (in 0.1°C) valid until 1st communication     | 50                              | <b>*</b> |
|        | Minimum adjustable threshold value per object (in 0.1°C)     | 0                               | *        |
| increm | Maximum variable threshold value per object (in 0.1°C sents) | 200                             | <b>‡</b> |
|        | Step size for changing threshold value (in 0.1°C)            | 5                               | <b>‡</b> |
| 0.1°C) | Switching distance (hysteresis) (in                          | 30                              | ÷        |
|        | Analysis of the outdoor temperature release object           | 1 = activated   0 = deactivated |          |
|        | Value up to 1st communication                                | 0 0 1                           |          |

Automatic sun protection extends the shading if

- the sun is coming from the set direction and
- brightness exceeds the set threshold value
- longer than the extension delay.

| Solar protection position                                               | Shadow edge tracking and slat tracking | •        |
|-------------------------------------------------------------------------|----------------------------------------|----------|
| Façade alignment                                                        |                                        |          |
| (North=0°,O=90°,S=180°,W=270°)                                          | 180                                    | ÷        |
| Inclination of the façade in $^{\circ}$ (0 $^{\circ}$ = no inclination) | 0                                      | *        |
| Window height in cm                                                     | 150                                    | ÷        |
| Max. penetration depth of sun into the room in cm                       | 50                                     | <b>‡</b> |
| Shadow edge displacement at or above cm will be tracked                 | 10                                     | *        |
| Slat width (in mm)                                                      | 80                                     | *        |
| Slat distance (in mm)                                                   | 75                                     | <b>‡</b> |
| Min. angle change for<br>sending new slat position                      | 10                                     | <b>‡</b> |
| Slat angle (in °) after<br>0% slat movement command                     | 90                                     | <b>‡</b> |
| Slat angle (in °) after<br>100% slat movement command                   | 10                                     | *        |

Automatic sun prot. moves shade to the following position if

- brightness falls below threshold value - switching distance
- longer than the short delay.



| Use movement position                                               | ○ No ○ Yes                                                          |   |
|---------------------------------------------------------------------|---------------------------------------------------------------------|---|
| Movement position (in %)                                            | 100                                                                 | ÷ |
| Use slat position                                                   | ○ No ○ Yes                                                          |   |
| Slat position (in %)                                                | 0                                                                   | * |
| Automatic sun protection ends if                                    |                                                                     |   |
| - the sun is not coming from the set direction                      |                                                                     |   |
| - or brightness falls below<br>threshold value - hysteresis         |                                                                     |   |
| Move to position, if no automation with higher priority is executed |                                                                     |   |
| Movement position (in %)                                            | 0                                                                   | + |
| Slat position (in %)                                                | 0                                                                   | * |
| Fig.4.25.2(7                                                        | ) Sun protection automation                                         |   |
| Façade status output                                                |                                                                     |   |
| Analysis of the façade status release object                        | 1 = activated   0 = deactivated     0 = activated   1 = deactivated |   |

Fig.4.25.2(8) Facade status output

0 0 0 1

# **Timed opening**

The curtain can, at certain times, be opened compulsorily or stay open. For time opening, a movement position can be defined.

Parameter "Use"

Set whether a time opening is to be used.

Value up to 1st communication

Options:

No



Yes

Parameters as follow are visible when "Use" is selected "yes".

### Used with week time switch

```
Parameter "Period 1/1./24"
Parameter "Period 1/2/3/4 Sequence 1/2"
```

Set in which periods of the week and the calendar-timer, the time opening movement position is to be approached. The periods are defined in the menu "week timer" or "month timer" (see chapter 4. 27 Weekly timer and chapter 4. 28 Calendar timer).

Options:

No

Yes

# Position during time opening

```
Parameter "Movement position (in %)"
Parameter "Stat position (in %)"
```

Set the movement and slat position.

Options: 0...100

Options: **0...100** 

Parameter: "Analysis of the opening time release object"

Parameter "Value up to 1st communication"

Define the value of the release object for time opening. Using the release object, time opening can be deactivated at short-notice.

Options:1=activated | 0=deactivated/0=activated | 1=deactivated

Options: 0/1



# Timed and night closure

The curtain can, at certain times, and at night, be closed compulsorily. For the time and night closure a movement position can be defined.

```
Parameter: "Use timed closure".
Parameter: "Use night-time closure".
```

Set whether a time and/or night closure is to be used.

Options:

No

Yes

```
Parameter "Period 17.../24"
Parameter "Period 17/2/374 Sequence 172"
```

For the timed closure, set in which periods of the week and the calendar-timer, the timed closure movement position is to be travelled to. The periods are defined in the menu "week timer" or "month timer" (see chapter 4. 27 Weekly timer and chapter 4. 28 Calendar timer).

Options:

No

Yes

```
Parameter: "Analysis of the time closure release object"

Parameter: "Value before 1st communication"
```

This parameter is visible when parameter "use time closure" is selected "yes".

Define the value of the release object for the timed closure. Using the release object, the timed closure can be deactivated at short-notice.

Options: 1=activated | 0=deactivated/0=activated | 1=deactivated



Options: 0/1

Parameter "Analysis of the night closure release object"

Parameter "Value before 1st communication"

This parameter is visible when parameter "use night-time closure" is selected "yes".

Define the value of the release object for the night closure. Using the release object, the night closure can be deactivated at short-notice

Options: 1=activated | 0=deactivated/0=activated | 1=deactivated

Options: 0/1

Parameter "Night and period closure only once"

Parameter "Movement position" (in %) "

Parameter "Slat position" (in %) "

You can define that the time and night closure are only performed once per period/ night. Then also set the movement position.

Options: No/Yes

Options: 0...100

Options: 0...100

### **Heat protection:**

Above a certain outdoor temperature, a heat protection can be travelled to. Further parameters for heat protection are set in the chapter 4.25 "facades" (Heat protection).

If heat protection is used, then, as a precaution, protection is activated, if over a period of 48 hours no change in the measured value has been recorded at the relevant temperature sensor.

Parameter "Use"

This parameter is used to set whether use heat protection.

Options:



No

Yes

Parameters as follow are visible when "Use" is selected "yes".

Heat protection parameters are set in the "Facades" menu

```
Parameter "Analysis of the heat protection release object"

Parameter "Value up to 1st communication"
```

Define the value of the release object. Using the release object, the heat protection can be deactivated at short-notice.

Options: 1=activated | 0=deactivated/0=activated | 1=deactivated

Options: 0/1

# Movement position for heat protection

```
Parameter "Movement position (in %) "

Parameter "Slat position (in %) "
```

Set the movement and slat position.

Options: 0...100

### **Pyranometer:**

Above a certain global radiation value, a protection position can be taken up.

If global radiation monitoring is used, then, as a precaution, the protection is activated, if over a period of 48 hours no change in the measured value has been recorded at the relevant pyranometer.

```
Parameter "use"
```

Set whether the global radiation is to be considered. The threshold value can also be set by "changeable per object".

Options:

No



Yes

# Changeable per object

Parameters as follow are visible when "Use" is no selected "no".

Parameter: "Facade pyranometer 1/2/3/4"

This parameter is used to set whether use facade pyranometer 1/2/3/4.

Options:

No

Yes

Parameter: "Threshold value (in W/m)"

Parameter "Switching distance (hysteresis threshold value in)"

Parameter: "Threshold value hysteresis (in W/m²)"

Then set the threshold value for the global radiation and the switching distance for the event that the value is not reached. Options: **0...2500** 

Options: In percent(%)/In watts/m<sup>2</sup>

Options: 0...2500/0...100

Parameters as follow are visible when "use" is selected "changeable per object".

Parameter: "Threshold value (in W/m²) until 1<sup>st</sup> communication

Parameter "Minimum adjustable end time (in hours)"

Parameter: "Maximum variable threshold value (in W/m²)"

Parameter: "Step size threshold value (in W/m²)"

When specifying the threshold value by object the minimum and maximum values that can be set and the increment for the change are also defined.

Options: 0...2500

Options: 0...2500



Options: 0...200

# Movement position for pyranometer

Parameter "Movement position (in %)"

Parameter "Stat position (in %)"

Parameter "Analysis of the pyranometer release object"

Parameter "Value up to 1° communication"

Set the movement position and define the value of the release object. Using the release object, the pyranometer controller can be deactivated at short-notice.

Options: 0...100

Options: 0...100

Options:1=activated | 0=deactivated/0=activated | 1=deactivated

Options:0/1

### **Rain automation**

If rain protection has configured as rain automation, then its priority is between the pyranometer controller and the interior temperature block. Rain automation is set in the general settings of the chapter 4.25 facade ( Rain automation) and chapter 4.25.2 facade X safety (Rain).

# Interior temperature block

Below a certain interior temperature, the curtain can be prevented from opening.

Parameter "use"

Set whether an interior temperature block is to be used. The threshold value can also be set by "changeable per object".

Options:

No

Yes

Changeable per object



# Are activated via the bit object

Parameter: "Threshold value (in  $0.1\,^{\circ}\mathrm{C}$ )"

Parameter: "Switching distance (hysteresis)(in 0.1°C)"

This parameter is visible when parameter "use" is selected "yes" and "Changeable per object".

Then set the threshold value for the temperature block and the switching distance for the event that the value is not reached.

Options: -32768...32767

Options: -200...300

Parameter: "Minimum adjustable threshold value per object(in  $0.1^{\circ}\mathrm{C})$ "

Parameter: "Maximum variable threshold value per object (in 0.1°C increments)"

Parameter: "Step size for changing threshold value (in  $0.1^{\circ}\mathrm{C})$ "

This parameter is visible when parameter "use" is selected "Changeable per object".

When specifying the threshold value by object the minimum and maximum values that can be set and the increment for the change are also defined.

Options: -32768...32767

Options: -32768...32767

Options: 1...20

Parameter: "Assessment of the indoor temperature blocking object"

Parameter: "Action until 1st communication"

This parameter is visible when parameter "use" is selected "Are activated via the bit object".

When specifying the threshold value by bit object the interior temperature block object is also defined.

Options:1=Lock | 0=Release/0=Lock | 1=Release

Options: Disable/Enable

arameter. "Assessment of the indoor temperature blocking release object"

"Value up to 1<sup>st</sup> communication

This parameter is visible when parameter "use" is selected "yes" and "Changeable per object".

Define the value of the release object for the interior temperature block. Using the release object, the interior temperature block can be deactivated at short-notice.

Options:1=activated | 0=deactivated/0=activated | 1=deactivated

Options:0/1

# Sun protection automation

If none of the blocks is active, then the position of the sun and the brightness are checked and is, corresponding to the solar protection automation, shaded.

Parameter "use"

Set whether solar protection automation is to be used.

Options:

No

Yes

Parameters as follow are visible when parameter "use" is selected "yes".

arameter..."Analysis of the automatic sun release object

Value up to 1<sup>st</sup> communication

Define the value of the release object for solar protection automation. Using the release object, solar protection automation can be deactivated at short notice.

Options:1=activated | 0=deactivated/0=activated | 1=deactivated

Options:0/1

# Sun position

Set the direction and height of the sun for shading. The angle, which is specified for the direction of the sun (azimuth), is aligned according to the orientation of the facade.

In addition, the angle of the facade and obstacles which cast a shadow on the facade, such as, for example, a wall or overhanging roof, can also be taken into account in the setting for sun direction (azimuth) and sun height (elevation).

Top view(Fig.1): Sun elevation(Azimuth)

In the morning, the building is fully shaded by surrounding trees.

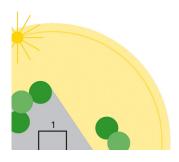



Fig.1

Top view(Fig.2): Sun elevation (Azimuth)

For facade 1, shading must only be active in the azimuth marked red, as the sun can then shine on to the building without obstruction.

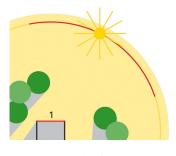
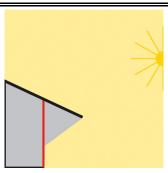




Fig.2

Side view(Fig.3): Sun position (Elevation)

When the sun's position is high, the facade is only shaded by the roof over hang. Shading is only necessary if the sun is low(in the figure approx.below 53°)<sub>o</sub>





Parameter: "Definition of ranges for direction and height of the sun per"

Select whether the ranges for the direction and height of the sun are to be specified per parameter or via a communication object.

Options:

### **Parameter**

# **Communication object**

```
Parameter "Direction of the sun"

Parameter "From (m)"

Parameter "To(in)"

Parameter "Height of the sun"

Parameter "From (m)

Parameter "To(in)"

Parameter "To(in)"

Parameter "To(in)"
```

If the ranges are specified by parameter, then several ranges can be specified. Specify the direction for the shading, either with the defined compass direction or with "angle range" and by inputting the values exact to a degree. If the ranges are specified by communication object, then onlyonly the starting values for direction and height are defined, that are valid until the first call.



Options: 1/2/3

Options: All sides/West/South-West/South/South-East/East/Angle range

Options: 0...360

Options: 0...360

Options: Any height/Angle range

Options: -90...90

Options: -90...90

Options: 1...10

Note: For sun direction and height, a fixed switching distance of 1° is valid

Parameter "Brightness sensor selection"

Next you select which brightness value (sensor) is to be relevant for the shading of the facade. The highest currently measured value of the five internal sensors can be used as the brightness value (since this maximum value in conjunction with the position of the sun provides the best basis for shading control, the 5 individual sensor values are not output), or a value that was received via a communication object.

Options:

Internal sensors(maximum value)

Via communication object

Parameter: "Preset threshold value for brightness per"

Select whether the brightness threshold value is to be specified per parameter or via a communication object. Please observe that the communication object outputs the threshold value in Lux the threshold value, however is set in Kilolux.

Options:

**Parameter** 

**Communication object** 



"Threshold value (in kLux)" "Threshold value (in kLux) valid until 1st communication" Parameter "Minimum adjustable threshold value (in kLux) Parameter: "Maximum adjustable threshold value (in kLux) arameter: "Step size (in kLux) arameter "Switching distance (hysteresis) threshold value in" Parameter: "Switching distance (hysteresis) (in kt.ux):

Set the brightness threshold value and the switching distance for the event that the value is not reached. If the value is specified via communication object, then a starting value and the possible setting range is defined.

Options: 1...150

Options: 1...150

Options: 1...150

Options: 1...150

Options: 1...5

Options: In percent (%)/In kLux

Options: 1...150

# Travel delays

For the shading there are three travel delays:

The extension delay defines the waiting time for the sun automation after the brightness threshold value has been exceeded.

At the end of the short delay time after the brightness value has not been reached an intermediate position is approached. For example, here a position can be defined that only differs from the shading



position "extended" by the slat position on the shutter. The shade does not immediately go up, but lets in somewhat more light. This position is set further down in the same menu.

The retraction delay defines the waiting time for the retraction after the brightness threshold value has not been reached.

Parameter "Retraction and extension delay is stipulated by"

Select whether the travel delay is to be specified per parameter or via objects.

Options:

### **Parameter**

# **Object**

```
Parameter :
          "Extension delay (in minutes)"
           'Minimum adjustable extension delay (in minutes)'
           'Maximum adjustable extension delay (in minutes)'
            Step size (in minutes)
           'Brief delay (in seconds)
Parameter
Parameter :
           "Minimum short delay (in seconds)
Parameter
           "Maximum short delay (in seconds)
Parameter: "Increment (in seconds)"
           "Retraction delay (in minutes)"
Parameter: "Minimum retraction delay (in minutes)"
          "Maximum retraction delay (in minutes)
Parameter: "Step size (in minutes)
```

Set the delay times. If the delays are specified via communication object, then a starting value and the possible setting range is defined.

Options: 1...240

Options: 1...240

Options: 1...240

Options: 1...10

Options: 1...3600

Options: 1...3600

Options: 1...3600

Options: 1...240

Options: 1...240

Options: 1...240

Options: 1...240

Options: 1...10

# **Outdoor temperature block**

Below a certain outdoor temperature, the shade is withdrawn.

If the outdoor temperature block is used, then, as a precaution, the block is activated, if over a period of 48 hours no change in the measured value has been recorded at the relevant temperature sensor.

# Parameter "use"

Set whether an outdoor temperature block is to be used. The threshold value can also be set by "changeable per object".

Options:

No

Yes

Changeable per object



'arameter: "Threshold value (in 0.1°C)" "Switching distance (hysteresis) (in 0.1°C)"

This parameter is visible when parameter "use" is selected "yes".

Then set the threshold value for the temperature block and the switching distance for the event that the value is exceeded.

Options: -200...300

arameter "Threshold value (in 0.1°C) valid until 1° communication arameter: "Minimum adjustable threshold value per object (in 0:1°C)? arameter: "Maximum variable threshold value per object (in 0.1°C increments) "Step size for changing threshold value (in 0.1°C)"

This parameter is visible when parameter "use" is selected "changeable per object".

When specifying the threshold value by object the minimum and maximum values that can be set and the increment for the change are also defined.

Options: -200...300

Options: -200...300

Options: -200...300

Options: 1...20

arameter: "Analysis of the outdoor temperature release object-

arameter: "Value up to 1<sup>st</sup> communication

Define the value of the release object for the outdoor temperature block. Using the release object, the outdoor temperature block can be deactivated at short-notice.

Options: 1=activation | 0=deactivation/0=activation | 1=deactivationOptions: 0/1



# Solar protection position and auto-guiding

Solar protection extends the shading automatically if the sun is coming from the set direction and the brightness of the set threshold value is exceeded over a period longer the extension delay time.

For the movement position "Solar protection" auto-guiding can be set. Settings for slats are only displayed if the shading for the facade has been defined as having slats (see chapter 4.25.1 facade safety).

Without auto-guiding a fixed position is travelled to.

With a four step slat guiding concept, a defined movement position is travelled to and the slats are tilted in four steps according to the position of the sun.

For slat auto-guiding, the direction and slant of the facade are taken into account, and internally the angle of the slat so calculated that no direct light can shine through the slats.

For shadow edge tracking, a fixed slat position is set (only for shades with slats). For the movement position, the orientation and slant of the facade and the height of the window are taken into consideration so that it can be defined how far the sun may shine into the room.

Shadow edge tracking and slat auto-guide are also possible in combination.

Before setting auto-guide, please read the instructions in chapter Optimal usage of facade controller functions.

# Parameter: "Solar protection position"

This parameter is used to set the solar protection position.

Options:

Without tracking

Slats in 4 stages

Slat tracking

Shadow edge tracking

Shadow edge tracking and Slat tracking



```
Parameter: "Movement position (in %)"
Parameter "Slat position (in %)"
```

This parameter is visible when parameter "Solar protection position" is selected "Without tracking". Without auto-guiding a fixed position is travelled to.

Options: 0...100

```
?arameter: "Range 1 (0°-x°)"
Parameter: "Range 2 (x°-y°)
Parameter: "Range 3 (y°-z°)'
Parameter "Range 4 (z°-90°)'
Parameter: "with x
Parameter "with y
           with z
```

This parameter is visible when parameter "Solar protection position" is selected "Slats in 4 stages". With the four step slat guiding the fixed movement position and the four slat angles are defined (only for shades with slats).

Options: 0...100

Options: 0...90

```
Parameter: "Movement position (in %)"
           "Facade alignment (North = 0°.0=90°, S=180°, W=270°)
Parameter "Inclination of the facade in ^\circ(0^\circ=no inclination)
            "Slat orientation
Parameter
           "Slat width (in mm)
```

Parameter "Slat distance (in mm)"

Parameter: "Min.angle change for sending new slat position"

Parameter: "Slat angle (in") after 0% slat movement command"

Parameter "Slat angle (in") after 100% slat movement command"

For the slat guiding the fixed movement position and the characteristics of the facade and the slats are specified (only for shades with slats). The device calculates the ideal slat position, so that no direct light can enter through the slats, but such that, at all times, as much indirect light as possible lights up the room.

With the setting for the minimum change of angle for transmission of a movement command, the "increment" respectively the frequency of the angle correction can be adjusted. Hereby, the technical possibilities of the drive used must be taken into consideration. The minimum change of angle is taken into account in the device internal calculation, so that direct sunlight can be prevented, even for large steps.

The slat angle at 0% move command and at 100% move command must, during commissioning, be aligned to the pre-settings of the parameters, and, if necessary, corrected, so that the slat guide on the facade works properly. For this purpose, observe chapter 4.25.1.5 Slat position for horizontal slats and chapter 4.25.1.6 Slat position for vertical slats. Options: **0...360** 

Options: -90...90

Options: Horizontal/Vertical

Options: 0...1000

Options: 0...1000

Options: 0...90

Options: 1...180

Options: 1...180



arameter: "Movement position (in %)"

"Facade alignment (North = 0".0=90", S=180", W=270")"

arameter "Inclination of the facade in (0)=no inclination)

Parameter: "Window height in cm'

arameter: "Max penetration depth of sun into the room in cm'

For the shadow edge auto-guide a fixed slat position is set (only for shades with slats). For the movement position the orientation and angle of the facade and the height of the windows (glass height) are specified. The device calculates the ideal position so that the specified maximum depth of penetration into the room for the sun, is not exceeded.

Using the setting for, from which shadow edge shift, in centimetres, a move command is to be transmitted, the frequency of the position correction can be adjusted. Hereby, the technical possibilities of the drive used must be taken into consideration.

See also chapter 4.25.1.3 Shadow edge tracking and slat tracking. Options: 1...100

Options: 0...360

Options: -90...90

Options: 0...1000

Options: 10...250 Options: 1...50

Note: The slant of the facade and the angle set for the height of the sun should be compatible.

Thus, if the facade is slanted forwards by 10°, then the sun only needs to be considered up to a height of 80°. Enter this separately with the parameters the parameter for sun direction and height (see chapter 4.25.2 solar protection automation, Sun position).

Intermediate position for the short retraction delay time



Solar protection automation moves to the "short delay" position if the shading has been extended by the solar protection automation and the brightness is then below the value (threshold value - switching distance) for longer than the short delay time.

Parameter: "Use movement position"

Parameter: "Movement position (in %)"

Parameter: "Use slat position"

Parameter: "Slat position (in %)"

For the movement position "short retraction delay" a movement position and a slat position can be set. Settings for slats are only displayed if the shading for the facade has been defined as having slats (see chapter 4.25.1 facade safety).

Options: No/Yes

Options: 0...100

Options: No/Yes

Options: 0...100

Parameter: "Movement position (in %)"

Parameter "Slat position (in %)"

Standard movement position.

Solar protection automation is terminated and the standard position is approached.

- 1.the sun is not coming from the set shading direction
- 2.the brightness is then below the value (threshold value switching distance)
- 3.for longer than the time (short delay + retraction delay time).

Settings for slats are only displayed if the shading for the facade has been defined as having slats (see chapter 4.25.1 facade safety).

Options: 0...100



#### **Facade status output**

Information on the various possibilities for the status output can be found in chapter 4.25.1.8 Status output. In principal the status output is a singular function, but, in compact form, possible for singular and for all facades possible. The texts for the output in compact form are defined in the general settings for the facade (see chapter 4.25.1.8 Status output).

Parameter: "Analysis of the facade status release object"

Parameter: "Value up to 1st communication"

Set which value in the status release object for this facade means active respectively in active.

Options: 1=activated | 0=deactivated/0=activated | 1=deactivated

Options: 0/1



#### 4.26 Parameter window "Computer"



Fig.4.26 Parameter window "Computer"

#### Parameter: "Use computer 1/.../8"

Activate the multi-functional computer, with which the input data can be changed by calculation, querying a condition or converting the data point type. The menus for the further setting of the computer are then displayed.

Options:

No

Yes

# **K-BUS** KNX/EIB KNX GPS Weather Station Pro

#### 4.26.1 Parameter window "Computer 1/.../8"

| Maintain the                                    |                    |            |
|-------------------------------------------------|--------------------|------------|
| input values received via communication objects | not                | •          |
|                                                 |                    |            |
| Function (I = Input)                            | Condition: I1 = I2 | •          |
| Input type                                      | 1 bit              | •          |
| Start value I1                                  | 0                  | <b>A</b> v |
| Start value I2                                  | 0                  | *          |
| Output type                                     | 1 bit              | •          |
| Output value O1                                 |                    |            |
| if the condition is met                         | 0                  | * ·        |
| if the condition is not met                     | 0                  | * **       |
| if the monitoring period is exceeded            | 0                  | *          |
| if blocked                                      | 0                  | <b>.</b>   |
| Output value O2                                 |                    |            |
| if the condition is met                         | 0                  | *          |
| if the condition is not met                     | 0                  | *          |
| if the monitoring period is exceeded            | 0                  | •          |
| if blocked                                      | 0                  | *          |



#### KNX/EIB KNX GPS Weather Station Pro

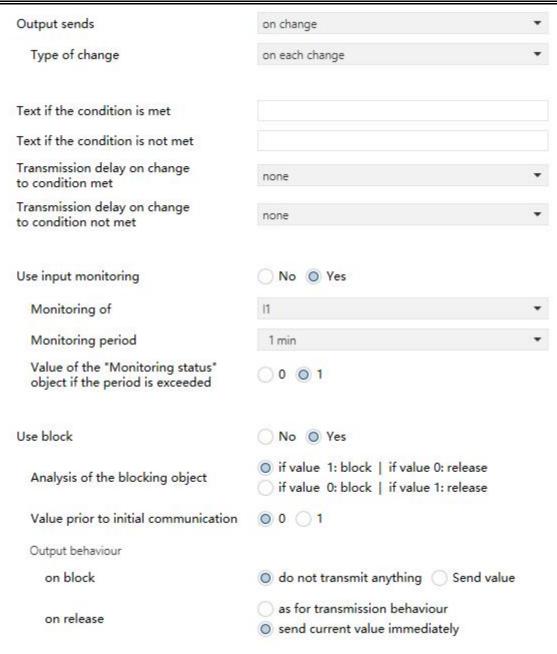



Fig.4.26.1 Parameter window "Computer 1/.../8"

Parameter "input values received via communication objects

Set, in which cases input values received are to be kept per object.

Options:

Not



#### After power supply restoration

#### After power supply restoration and programming

Note: The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

```
Parameter "Function (I=Input)"

Parameter "Input type"

Parameter "Tolerance for comparisor"

Parameter "Start value (1/2/3")
```

Select the function set the input mode and starting values for input 1/2/3.

Options: Condition: |1=|2/Condition: |1>|2/.../Transformation: General

Options: 1 bit/1 byte (0..255)/.../4byte floating point

Options: 0...100

Options: 0...100

Parameter "Output type"

Parameter "if the condition is met"

Parameter "if the condition is not met"

Parameter "if the monitoring period is exceeded"

Parameter "if blocked"

When querying the prerequisites set the output type and output values at different statuses:

Options: 1 bit/1 byte (0..255).../4byte counter with math.symbol/4byte floating point

Options: 0...65535



### KNX/EIB KNX GPS Weather Station Pro

| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | ******************** |  |
|-----------------------------------------|----------------------|--|
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
| 144.5.                                  |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         | <br>                 |  |
|                                         |                      |  |
|                                         |                      |  |
| Davamatar "Casal avala                  |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |
|                                         |                      |  |

Set the output send pattern.

Options: On change/On change and after reset/.../When receiving an input object an periodically

Options: On each change/On change to condition met/On change to condition not met

Options: 5sec/10s/.../1.5h/2h

```
Parameter "Text if the condition is met"

Parameter "Text if the condition is not met"
```

Set the text to be displayed for conditions met / not met.Free text max.14 chars.

Parameter "Transmission delay on change to condition met"

Parameter "Transmission delay on change to condition not met"

If applicable set the send delays.

Options:

None 1sec ... 1h 2h

```
Parameter: "Use input monitoring"

Parameter: "Monitoring of"

Parameter: "Monitoring period"

Parameter: "Value of the "Monitoring status" object if the period is exceeded"
```

### KNX/EIB KNX GPS Weather Station Pro

If necessary, activate the input monitoring. Set which inputs are to be monitored, at which intervals the inputs are to be monitored and what value the "monitoring status" should have, if the monitoring period is exceeded without feedback.

Options: No/Yes

Options: |1/|2/|1 and |2

Options: 5sec/10sec/.../1h/2h

Options: 0/1

Parameter: "Use block"

With the help of the "Blocking" input object, the switching output can be blocked, e.g. by a manual command (push button).

Options:

No

Yes

Parameters as follow are visible when "use block" is selected "yes".

Parameter "Analysis of the blocking object"

This parameter is used to set what a 1 or 0 at the block entry means.

Options:

If value 1:block | if value 0: release

If value 0:block | if value 1: release

Parameter "Value prior to initial communication"

An object value up to the 1st communication is specified here.

Options: 0/1

Parameter "on block"

Parameter "on release"

The behaviour of the switching output during locking/release can be set.



Options: Do not transmit anything/Send value

Options: As for transmission behaviour/Send current value immediately



#### 4.27 Parameter window "Weekly time switch"

In the weekly timer in the device 24 periods can be defined. These periods are, for example, used for the internal automatic function timed opening and timed closure.

The respective period objects can be configured as inputs or outputs, i.e. send to the bus (timer internal, use internal and for other bus members) or be switched from there (timer function via an external device). If several devices are used in the system, the timer settings may be done on one device that sends the period objects as output. The other devices take over the timer-command (input), whereby a better synchronisation is achieved.

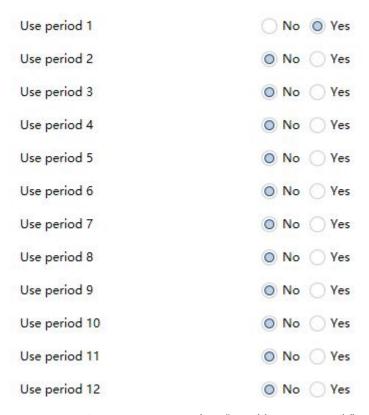



Fig.4.27 Parameter window "Weekly time switch"

Parameter "Use period 1/.../24"

Activate the required periods for the weekly timer.

Options:No/Yes



# **K-BUS** KNX/EIB KNX GPS Weather Station Pro

#### 4.27.1 Parameter window "Period 1/.../24"

| Period                                                | can be switched (time period obj |     |
|-------------------------------------------------------|----------------------------------|-----|
| Use objects for switching times                       | No Ves                           |     |
| Maintain the                                          |                                  |     |
| switching times received<br>via communication objects | not                              | •   |
|                                                       |                                  |     |
| Switch on time (hours)                                | 0                                | *   |
| Switch on time (minutes)                              | 0                                | A   |
| Switch-off time (hours)                               | 0                                | A . |
| Switch-off time (minutes)                             | 0                                | *   |
| Period switches to                                    |                                  |     |
| Monday                                                | ○ No ○ Yes                       |     |
| Tuesday                                               | O No Yes                         |     |
| Wednesday                                             | No Yes                           |     |
| Thursday                                              | No Yes                           |     |
| Friday                                                | O No Yes                         |     |
| Saturday                                              | O No Yes                         |     |
| Sunday                                                | O No Yes                         |     |

### KNX/EIB KNX GPS Weather Station Pro

| Send switching outputs                | on change and periodically | •   |
|---------------------------------------|----------------------------|-----|
| Sen <mark>d c</mark> ycle             | 10 sec                     | •   |
| 8-bit output value if period active   | 0                          | *   |
| 8-bit output value if period inactive | 0                          | * v |

Fig.4.12.1(1) Parameter window "Period 1/.../24\_can be set(time period object is output)"

| Period                                                           | <ul> <li>can be set (time period object is output)</li> <li>can be switched (time period object is inpu</li> </ul> |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| (If an external time switch, e.g. for the façade, is to be used) |                                                                                                                    |
| Period is active                                                 | on object value = 1 o on object value = 0                                                                          |
| Object value prior to initial communication                      | 0 0 1                                                                                                              |

Fig.4.12.1(2) Parameter window "Period 1/.../24\_can be switched(time period object is input)"

```
Parameter "Period"
```

Set whether the period can be set (period object is the output and is sent to the bus) or if the period is received externally via the bus (period object is the input).

Options:

Can be set(time period object is output)

Can be switched(time period object is input)

```
Parameter "Use objects for switching times"

Parameter "switching times received via communication objects"
```

Set whether the switching times are set per object and in which cases the switching times received are to be retained.

Options: No/Yes

Options: Not/After power supply restoration/After power supply restoration and programming



Note: The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

```
"Switch on time (hours)"
Parameter :
            'Switch on time (minutes)'
Parameter:
           "Switch-off time (hours)"
            'Switch-off time (minutes)'
<sup>p</sup>arameter
            'Monday'
Parameter
            Wednesday
Parameter
            Thursday
Parameter
Parameter
            'Friday"
Parameter :
            "Saturday
Parameter
           "Sunday
```

Set the switching on and off times and the days of the week for this period. If, for example, 15:35 is set as the switch-off time, the output switches off on the change from 15:35 to 15:36.

Options: 0...23

Options: 0...59

Options: 0...23

Options: 0...59

Options: No/Yes

Parameter "Send switching outputs"

Parameter "Send cycle"

Parameter "8-bit output value if period active"

Parameter "8-bit output value if period inactive"

Set the send pattern for the week clock switch output and the value of the 8-bit output.

Options: not/on change/.../ on change to inactive and periodically

Options: 5sec/10s/.../1.5h/2h

Options: 0...255

Options: 0...255



#### 4.28 Parameter window "Calendar time switch"

In the calendar timer in the device, four periods with two switching sequences can be defined.

These periods are, for example, used for the internal automatic function timed opening and timed closure.

| Period 1 | not active active   |
|----------|---------------------|
| Period 2 | o not active active |
| Period 3 | o not active active |
| Period 4 | o not active active |

Fig.4.28 Parameter window "Calendar time switch"

# Parameter "Period 1/2/3/4"

This parameter sets whether use period 1/2/3/4.

Options:

Not active

**Active** 

# S K-BUS KNX/EIB KNX GPS Weather Station Pro

#### 4.28.1 Parameter window "Period 1/2/3/4"

| Use objects for switching and<br>switching times               | ○ No ○ Yes                             |   |
|----------------------------------------------------------------|----------------------------------------|---|
| Maintain the                                                   |                                        |   |
| switching data and times received<br>via communication objects | not                                    | • |
|                                                                |                                        |   |
| From:                                                          |                                        |   |
| Month                                                          | January                                | • |
| Day                                                            | 1                                      | * |
| Up to and including:                                           |                                        |   |
| Month                                                          | December                               | • |
| Day                                                            | 1                                      | * |
| Sequence 1:                                                    |                                        |   |
|                                                                |                                        |   |
| Switch on time (hours)                                         | 0                                      | * |
| Switch on time (minutes)                                       | 0                                      | * |
| Switch-off time (hours)                                        | 0                                      | * |
| Switch-off time (minutes)                                      | 0                                      | ÷ |
| Send switching outputs                                         | on change to inactive and periodically | • |
| Send cycle                                                     | 10 sec                                 | • |
| 8-bit output value if sequence active                          | 0                                      | * |
| 8-bit output value if                                          | 0                                      | ÷ |

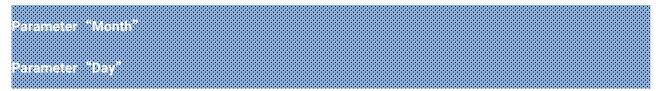


| Sequence 2:                             |                                        |          |
|-----------------------------------------|----------------------------------------|----------|
| Switch on time (hours)                  | 0                                      | ÷        |
| Switch on time (minutes)                | 0                                      | <b>‡</b> |
| Switch-off time (hours)                 | 0                                      | *        |
| Switch-off time (minutes)               | 0                                      | *        |
| Send switching outputs                  | on change to inactive and periodically | •        |
| Send cycle                              | 10 sec                                 | •        |
| 8-bit output value if sequence active   | 0                                      | ÷        |
| 8-bit output value if sequence inactive | 0                                      | ÷        |

Fig.4.11.1 Parameter window "Period 1/2/3/4"

Parameter: "Use objects for switching and switching times".

Parameter: "switching data and times received via communication objects".


Set whether the switching date and the switching time are set per object and in which cases the switching dates and times received are to be retained.

Options: No/Yes

Options: Not/After power supply restoration/After power supply restoration and programming

Note: The setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

#### From/Up to and including:



The start date and end date are defined.

Options: January/February/.../November/December

Options: 1...31



#### Sequence 1/2

```
Parameter "Switch on time (hours)"

Parameter "Switch on time (minutes)"

Parameter "Switch-off time (hours)"

Parameter "Switch-off time (minutes)"
```

A sequence sets the switch-on and switch-off time for each day of the set period.

Options: 0...23

Options: 0...59

Options: 0...23

Options: 0...59

Parameter "Send switching outputs"

Parameter "Send cycle"

Parameter "8-bit output value if sequence active"

Set the send pattern for the switch sequence and the value of the 8-bit output.

Options:not/on change/ on change to active/ .../on change to inactive and periodically

Options:5sec/10s/.../1.5h/2h

Parameter: "8-bit output value if sequence inactive"

Options: 0...255



## 4.29 Parameter window "Logic"

The device has 16 logic inputs, eight AND and eight OR logic gates.

| Use logic inputs                     | ○ No ○ Yes |
|--------------------------------------|------------|
| Object value before 1. communic for: | cation     |
| - Logic input 1                      | 0 0 1      |
| - Logic input 2                      |            |
| - Logic input 3                      |            |
| - Logic input 4                      |            |
| - Logic input 5                      | © 0 O 1    |
| - Logic input 6                      | © 0 O 1    |
| - Logic input 7                      | © 0 O 1    |
| - Logic input 8                      | ○ 0        |
| - Logic input 9                      | ◎ 0 ○ 1    |
| - Logic input 10                     |            |
| - Logic input 11                     |            |
| - Logic input 12                     |            |
| - Logic input 13                     |            |
| - Logic input 14                     |            |
| - Logic input 15                     | ○ 0        |
| - Logic input 16                     |            |



## KNX/EIB KNX GPS Weather Station Pro

| AND logic:  |              |                         |
|-------------|--------------|-------------------------|
| AND logic 1 | onot active  | active                  |
| AND logic 2 | o not active | active                  |
| AND logic 3 | o not active | active                  |
| AND logic 4 | o not active | active                  |
| AND logic 5 | o not active | active                  |
| AND logic 6 | o not active | active                  |
| AND logic 7 | o not active | active                  |
| AND logic 8 | o not active | active                  |
| OR logic:   |              |                         |
| OR logic 1  | onot active  | o ac <mark>ti</mark> ve |
| OR logic 2  | o not active | active                  |
| OR logic 3  | o not active | active                  |
| OR logic 4  | o not active | active                  |
| OR logic 5  | o not active | active                  |
| OR logic 6  | o not active | active                  |
| OR logic 7  | o not active | active                  |
| OR logic 8  | o not active | active                  |

Fig.4.29 Parameter window "Logic"

Parameter "Use logic inputs"

This parameter is used to set whether use logic inputs. Options:

No

Yes



#### Object value before 1. communication for:

Parameter "-Logic input 1/.../16

This parameter is visible when previous parameter is selected "yes".

The device has 16 logic inputs, 8 AND and 8 OR logic gates.

For each logic input, the object value can be assigned before the first communication, which is used for the initial commissioning and when the voltage returns.

Options:

0

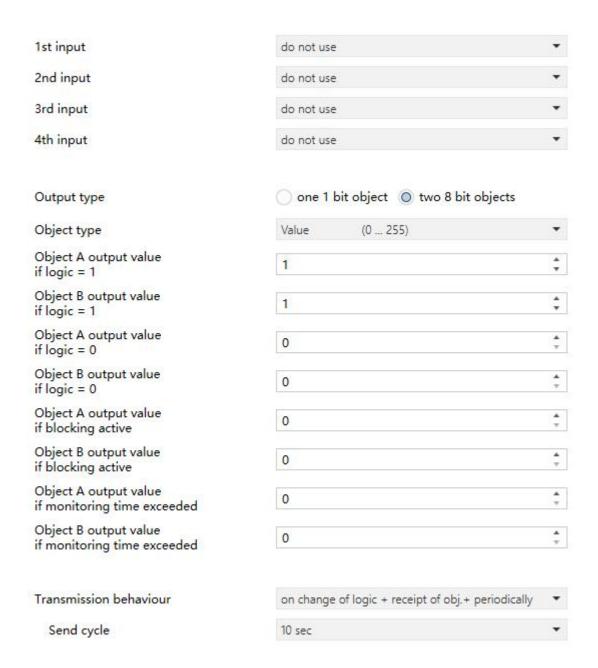
1

#### **AND/OR logic**

Parameter: "AND logic 1/.../6"

Parameter "OR logic 1/.../6"

This parameter is used to set whether active and/or logic.


Options:

not active

active



#### 4.29.1 Parameter window "AND/OR logic 1/.../8"



| Block:                                                                           |                                                                           |   |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|--|--|--|
| Use block                                                                        | ○ No ○ Yes                                                                |   |  |  |  |
| Evaluation of the blocking object                                                | <ul><li>1 = block   0 = Release</li><li>0 = block   1 = Release</li></ul> |   |  |  |  |
| Blocking object value<br>before 1. communication                                 | ○ 0                                                                       |   |  |  |  |
| Output behaviour                                                                 |                                                                           |   |  |  |  |
| On block                                                                         | do not send telegram     Transmit blocking value                          |   |  |  |  |
| on release<br>(with 2 seconds release delay) send value for current logic status |                                                                           |   |  |  |  |
| Monitoring:                                                                      |                                                                           |   |  |  |  |
| Use input monitoring                                                             | ○ No ○ Yes                                                                |   |  |  |  |
| Input monitoring                                                                 | 1+2+3+4                                                                   | 2 |  |  |  |
| Monitoring period                                                                | 1 min •                                                                   |   |  |  |  |
| Output behaviour on exceeding the monitoring time                                | odo not send telegram Transmit excess value                               |   |  |  |  |

Fig.4.29.1 Parameter window "AND logic 1/.../8"

```
"1st input"
2nd input
"3rd input
"4th input"
```

Four inputs can be defined for each logic gate. Options:

Do not use

Logic input 1...16

Logic input 1...16 inverted

**GPS Malfunction = ON** 



**GPS Malfunction = OFF** 

Temperature sensor malfunction = ON

Temperature sensor malfunction = OFF

•••

Weekly clock OR 1...4

Weekly clock OR 1...4 inverted

```
Parameter: "Output type"
```

Each logic output can transmit one 1-bit or two 8-bit objects.

Options:

one 1 bit object

two 8 bit objects

Parameters as follow are visible when parameter "logic output sends" is selected "one 1 bit object".

```
Parameter "Output value if logic = 1"

Parameter "Output value if logic = 0"

Parameter "Output value if blocking active"

Parameter "Output value if monitoring time exceeded"
```

If the output type is a 1-bit object, set the output values for the various conditions.

Options: 0...1Parameters as follow are visible when parameter "logic output sends" is selected "two 8 bit objects".

```
Parameter "Object type"
Parameter "Object A output value if logic = 1"
Parameter "Object B output value if logic = 1"
```

```
Parameter: "Object A output value if logic = 0"

Parameter: "Object B output value if blocking active"

Parameter: "Object B output value if blocking active"

Parameter: "Object B output value if blocking active"

Parameter: "Object A output value if monitoring time exceeded"
```

If the output type is two 8-bit objects, set the type of object and the output values for the various conditions.

Options:Value (0...255)/Percent (0%...100%)/Angle (0 ° ...360 ° )/Scene call-up (0...63)Options:0...255/0%...100%/0°...360°/0...63

Parameter "Transmission cycle"

Set the output send pattern.

Options: on change of logic/.../ On change of logic + receipt of object + periodically

Options: 5sec/10s/.../1.5h/2h

#### **Blocking:**

Parameter "Use block"

This parameter is used to set whether activate the block for the logic output.

Options:

No

Yes

Parameters as follow are visible when "use block" is selected "yes".

Parameter: "Evaluation of the blocking object"



Each logic gate has its own block object (AND logic X: output block), for which it is set here whether it blocks on receipt of a 1 or 0.

Options:

1=block | 0=release

0=block | 1=release

Parameter: "Blocking object value before 1.communication"

Before the first communication, i.e. after commissioning or bus voltage restoration, the block can be active (1) or not (0).

Options: 0/1

Parameter: "With blocking"

This parameter is used to set the action when locking.

Options:

Do not send telegram

Transmit blocking value

Parameter: "On release(with 2 seconds release delay)"

This parameter is used to set the action when release.

Options: [Dependent on the "Switching output sends" setting]

#### Monitoring:

Parameter: "Use input monitoring"

Parameter "Input monitoring"

Parameter "Monitoring period"

Parameter: "Output behaviour on exceeding the monitoring time"

## KNX/EIB KNX GPS Weather Station Pro

If necessary, activate the input monitoring. Set which inputs are to be monitored, at which intervals the inputs are to be monitored and what value the "monitoring status" should have, if the monitoring period is exceeded without a feedback being given.

Options:No/Yes

Options:1/2/3/4/.../2+3+4/1+2+3+4

Options:5sec/10sec/.../1.5h/2h

Options: Do not send telegram/Transmit excess value



## **Chapter 5 Description of communication object**

The communication object is the medium to communicate other device on the bus, namely only the communication object can communicate with the bus.

NOTE: "C" in "Flag" column in the below table means enable the communication function of the object; "W" means value of object can be written from the bus; "R" means the value of the object can be read by the other devices; "T" means the object has the transmission function; "U" means the value of the object can be updated.

#### 5.1 Communication object of "General settings"

| _        | Number | <sup>4</sup> Name | Object Function | Description | Group Address | Length  | С | R | W | T | U | Data Type   | Priority |
|----------|--------|-------------------|-----------------|-------------|---------------|---------|---|---|---|---|---|-------------|----------|
| <b>"</b> | 1      | Software version  | Output          |             |               | 2 bytes | C | R | 4 | Т | - | DPT version | Low      |

Fig. 5.1 Communication object of "General settings"

| NO. | Name                                         | Function | Types  | Property | DPT          |  |  |  |  |  |  |
|-----|----------------------------------------------|----------|--------|----------|--------------|--|--|--|--|--|--|
| 1   | Software version                             | Output   | 2bytes | C,R,T    | 1.001 Switch |  |  |  |  |  |  |
| F   | Read the Software Version using this Object. |          |        |          |              |  |  |  |  |  |  |

Table 5.1 Communication object of "General settings"



## 5.2 Communication object of "GPS settings"

|                | Number | ' Name                 | Object Function | Description | Group Address | Length  | C | R | W | T | U | Data Type   | Priority |
|----------------|--------|------------------------|-----------------|-------------|---------------|---------|---|---|---|---|---|-------------|----------|
| m2             | 104    | GPS malfunction (0 : O | KOutput         |             |               | 1 bit   | C | R | - | T | - | boolean     | Low      |
| m+             | 106    | Date                   | Input / Output  |             |               | 3 bytes | C | R | W | Т | - | date        | Low      |
| m#             | 107    | Time                   | Input / Output  |             |               | 3 bytes | C | R | W | T | - | time of day | Low      |
| <b>#</b>       | 108    | Date and time query    | Input           |             |               | 1 bit   | C | - | W | - | 2 | trigger     | Low      |
| m <del>2</del> | 105    | Date / time            | Input / Output  |             |               | 8 bytes | C | R | W | Т | _ | date time   | Low      |

|                                                                                                              | Fig.5.2 Comn                                                                | nunication o  | object of "( | GPS settings | n                         |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|--------------|--------------|---------------------------|--|--|--|--|--|--|--|
| NO.                                                                                                          | Name                                                                        | Function      | Types        | Property     | DPT                       |  |  |  |  |  |  |  |
| 104                                                                                                          | GPS malfunction (0: OK   1: NOK)                                            | Output        | 1 Bit        | R,C,T        | 1.002 boolean             |  |  |  |  |  |  |  |
| If enabled, gps error is recognised = 1 when no value received after a 20min-2hr time. (0 = No Eror Default. |                                                                             |               |              |              |                           |  |  |  |  |  |  |  |
| 105                                                                                                          | Date / time                                                                 | Output        | 8 Bytes      | R,W,C,T      | 19.001 date time          |  |  |  |  |  |  |  |
| В                                                                                                            | <br>Both Date and Time are read or writte                                   | en using this | object.      |              |                           |  |  |  |  |  |  |  |
| 106                                                                                                          | Date                                                                        | Output        | 3 Bytes      | R,W,C,T      | 11.001 date               |  |  |  |  |  |  |  |
|                                                                                                              | The Date can be read or written here. een setting the Date and Time is allo |               | ng manual    | ly, a maximu | ım interval of 10 seconds |  |  |  |  |  |  |  |
| 107                                                                                                          | Time                                                                        | Output        | 3 Bytes      | R,W,C,T      | 10.001 time of day        |  |  |  |  |  |  |  |
|                                                                                                              |                                                                             |               |              |              | Day                       |  |  |  |  |  |  |  |
| Т                                                                                                            | he Time can be read or written here.                                        | When setti    | ng manual    | ly, a maximu | ım interval of 10 seconds |  |  |  |  |  |  |  |
| betw                                                                                                         | veen setting the Date and Time is allo                                      | owed.         |              |              |                           |  |  |  |  |  |  |  |
| 108                                                                                                          | Date and time query                                                         | Input         | 1 Bit        | w,c          | 1.017 trigger             |  |  |  |  |  |  |  |

Writing a 1 to the communication object triggers the device to send its current date and time information to the KNX bus. This is often used to synchronize or retrieve the current time from the device.

Table 5.2 Communication object of "GPS settings"

### 5.3 Communication object of "Location"

|          | 序号 ▲ | 名称                      | 对象功能   | 描述 | 群组地址 | 长度      | C | R | W | Т | U | 数据类型           | 优先级 |
|----------|------|-------------------------|--------|----|------|---------|---|---|---|---|---|----------------|-----|
| <b>#</b> | 110  | Location: Latitude [°]  | Output |    |      | 4 bytes | C | R | - | T | - | angle (degree) | 低   |
| ==       | 111  | Location: Longitude [°] | Output |    |      | 4 bytes | C | R | - | Т | - | angle (degree) | 低   |

Fig.5.3 Communication object of "Location"

| NO. | Name                                                                                               | Function | Types   | Property | DPT                  |  |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------|----------|---------|----------|----------------------|--|--|--|--|--|--|--|--|
| 110 | 110 Location: Latitude [°] Output 4 Bytes R,C,T 14.007 angle(degree)                               |          |         |          |                      |  |  |  |  |  |  |  |  |
| Т   | The latitude can be read in degrees [°] (Provided from the GPS).Negative = South, positive = North |          |         |          |                      |  |  |  |  |  |  |  |  |
| 111 | Location: Longitude [°]                                                                            | Output   | 4 Bytes | R,C,T    | 14.007 angle(degree) |  |  |  |  |  |  |  |  |
| Т   | The longitude can be read in degrees [°] (Provided from the GPS).Negative = West, positive = East  |          |         |          |                      |  |  |  |  |  |  |  |  |

Table 5.3 Communication object of "Location"



## 5.4 Communication object of "Rain"

|          | Number | Name                                     | Object Function | Description | Group Address | Length  | C | R | W | T | U        | Data Type | Priority |
|----------|--------|------------------------------------------|-----------------|-------------|---------------|---------|---|---|---|---|----------|-----------|----------|
| ==       | 114    | Rain: Switching output                   | Output          |             |               | 1 bit   | C | R | ě | Т | Œ        | switch    | Low      |
| <b>■</b> | 115    | Rain: Switching output with fixed delays | Output          |             |               | 1 bit   | C | R | ् | T | ੂ        | switch    | Low      |
| ==       | 116    | Rain: Switching delay to rain            | Input           |             |               | 2 bytes | C | - | W | - | H        | time (s)  | Low      |
| =2       | 117    | Rain: Switching delay to no rain         | Input           |             |               | 2 bytes | C | 2 | W | 2 | <u>_</u> | time (s)  | Low      |

Fig. 5.4 Communication object of "Rain"

|                                                                                                     | Fig.5                              | .4 Commun     |             | ector Rain   |                                |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------|---------------|-------------|--------------|--------------------------------|--|--|--|--|--|--|--|
| NO.                                                                                                 | Name                               | Function      | Types       | Property     | DPT                            |  |  |  |  |  |  |  |
| 114                                                                                                 | Rain: Switching output             | Output        | 1 Bit       | R,C,T        | 1.001 switch                   |  |  |  |  |  |  |  |
|                                                                                                     |                                    |               |             |              |                                |  |  |  |  |  |  |  |
| This Object sends if Rain recognition on the bus (Rain=1; No Rain=0). After reset, (by settings: by |                                    |               |             |              |                                |  |  |  |  |  |  |  |
| chanç                                                                                               | ge, cyclically).                   |               |             |              |                                |  |  |  |  |  |  |  |
| 115                                                                                                 | Rain: Switching output with        | Output        | 1 Bit       | R,C,T        | 1.001 switch                   |  |  |  |  |  |  |  |
|                                                                                                     | fixed delays                       |               |             |              |                                |  |  |  |  |  |  |  |
| (                                                                                                   | Only valid up to the first call)   | 1 = rain, 0   | = no rain.  | When 1,      | the system reacts according to |  |  |  |  |  |  |  |
| prede                                                                                               | fined time intervals on how it ha  | ndles the tra | ansition ba | ck to dry co | nditions.(Rain=1; No Rain=0)   |  |  |  |  |  |  |  |
| 116                                                                                                 | Rain: Switch delay to rain         | Input         | 2 Bytes     | w,c          | 7.005 time(s)                  |  |  |  |  |  |  |  |
|                                                                                                     |                                    |               |             |              |                                |  |  |  |  |  |  |  |
| Т                                                                                                   | he delay can be set (in sec) for F | Rain recogni  | tion for on | e time.      |                                |  |  |  |  |  |  |  |
| 117                                                                                                 | Rain: Switch delay to no rain      | Input         | 2 Bytes     | W,C          | 7.005 time(s)                  |  |  |  |  |  |  |  |
|                                                                                                     |                                    |               |             |              |                                |  |  |  |  |  |  |  |
| Т                                                                                                   | he delay can (in sec) for No Rair  | recognition   | for one tir | ne           |                                |  |  |  |  |  |  |  |

Table 5.4 Communication object of "Rain"



## 5.5 Communication object of "Temperature"

|     | Number | Name                                            | Object Function | Description | Group Address | Length  | C | R | W | T   | U | Data Type        | Priority |
|-----|--------|-------------------------------------------------|-----------------|-------------|---------------|---------|---|---|---|-----|---|------------------|----------|
| m.  | 121    | Temperature sensor: Malfunction                 | Output          |             |               | 1 bit   | C | R | - | T   | - | switch           | Low      |
| ==  | 122    | Temperature sensor: External measurement        | Input           |             |               | 2 bytes | C | 2 | W | T   | _ | temperature (°C) | Low      |
| m-> | 123    | Temperature sensor: Internal measurement        | Output          |             |               | 2 bytes | C | R | - | T   | - | temperature (°C) | Low      |
| ==  | 124    | Temperature sensor: Total measurement           | Output          |             |               | 2 bytes | C | R | _ | T   | - | temperature (°C) | Low      |
| m-> | 125    | Temperature sensor: Min./Max. measurement query | Input           |             |               | 1 bit   | C | - | W | - 1 | - | trigger          | Low      |
| ==  | 126    | Temperature sensor: Minimum measurement         | Output          |             |               | 2 bytes | C | R | _ | T   | 2 | temperature (°C) | Low      |
| m.  | 127    | Temperature sensor: Maximum measurement         | Output          |             |               | 2 bytes | C | R | - | Τ   | - | temperature (°C) | Low      |
| =7  | 128    | Temperature sensor: Min./Max. measurement reset | Input           |             |               | 1 bit   | C | 2 | W | 21  | 2 | trigger          | Low      |
| m2  | 129    | Felt temp.: Measured value                      | Output          |             |               | 2 bytes | C | R | - | Τ   | - | temperature (°C) | Low      |

#### Fig. 5.5 Communication object of "Temperature"

| malfunction)  122 Temperature sensor: External measured value  when enabled, it measure the value of an external KNX Temp Sensor. If using an External Sensor the values should be sent to this object.  123 Temperature sensor: Measured value  Measured Value of the internal Sensor.  124 Temperature sensor: Switching output 2 Bytes R,C,T 9.001 temperature (°C) output, total  Output 2 Bytes R,C,T 9.001 temperature (°C)                                                                                                                                                                                                                                                                                     |       | r ig.5.5 Commi                                                                                         |          | or or remp | Ciutuic  |                        |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------|----------|------------|----------|------------------------|--|--|--|--|--|--|--|--|
| If enabled, it indicates if the temperature sensor is experiencing an error (1 = malfunction, 0 = no malfunction)  122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO.   | Name                                                                                                   | Function | Types      | Property | DPT                    |  |  |  |  |  |  |  |  |
| Temperature sensor: External Input 2 Bytes W,C,T 9.001 temperature (°C)  when enabled, it measure the value of an external KNX Temp Sensor. If using an External Sensor the values should be sent to this object.  123 Temperature sensor: Measured Output 2 Bytes R,C,T 9.001 temperature (°C)  walue Measured Value of the internal Sensor.  124 Temperature sensor: Switching Output 2 Bytes R,C,T 9.001 temperature (°C)  output, total 2 Bytes R,C,T 9.001 temperature (°C)  External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger  | 121   | Temperature sensor: Malfunction                                                                        | Output   | 1 Bit      | R,C,T    | 1.001 switch           |  |  |  |  |  |  |  |  |
| Temperature sensor: External Input 2 Bytes W,C,T 9.001 temperature (°C)  when enabled, it measure the value of an external KNX Temp Sensor. If using an External Sensor the values should be sent to this object.  123 Temperature sensor: Measured Output 2 Bytes R,C,T 9.001 temperature (°C)  value  Measured Value of the internal Sensor.  124 Temperature sensor: Switching Output 2 Bytes R,C,T 9.001 temperature (°C)  output, total  External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                      |       |                                                                                                        |          |            |          |                        |  |  |  |  |  |  |  |  |
| Temperature sensor: External measured value  when enabled, it measure the value of an external KNX Temp Sensor. If using an External Sensor the values should be sent to this object.  Temperature sensor: Measured value  Measured Value of the internal Sensor.  Temperature sensor: Switching Output 2 Bytes R,C,T 9.001 temperature (°C)  value  Measured Value of the internal Sensor.  Temperature sensor: Switching Output 2 Bytes R,C,T 9.001 temperature (°C)  output, total  External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger | li    | If enabled, it indicates if the temperature sensor is experiencing an error (1 = malfunction, $0 = no$ |          |            |          |                        |  |  |  |  |  |  |  |  |
| when enabled, it measure the value of an external KNX Temp Sensor. If using an External Sensor the values should be sent to this object.  123 Temperature sensor: Measured value  Measured Value of the internal Sensor.  124 Temperature sensor: Switching output 2 Bytes R,C,T 9.001 temperature (°C) output, total  External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                             | malfu | malfunction)                                                                                           |          |            |          |                        |  |  |  |  |  |  |  |  |
| when enabled, it measure the value of an external KNX Temp Sensor. If using an External Sensor the values should be sent to this object.  123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122   | Temperature sensor: External                                                                           | Input    | 2 Bytes    | W,C,T    | 9.001 temperature (°C) |  |  |  |  |  |  |  |  |
| values should be sent to this object.  123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | measured value                                                                                         |          |            |          |                        |  |  |  |  |  |  |  |  |
| Temperature sensor: Measured value  Measured Value of the internal Sensor.  124 Temperature sensor: Switching output 2 Bytes R,C,T 9.001 temperature (°C)  output, total  External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                                                                                                                                                                          | ٧     | when enabled, it measure the value of an external KNX Temp Sensor. If using an External Sensor the     |          |            |          |                        |  |  |  |  |  |  |  |  |
| Measured Value of the internal Sensor.  124 Temperature sensor: Switching Output 2 Bytes R,C,T 9.001 temperature (°C)  Output, total  External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                                                                                                                                                                                                              | value | s should be sent to this object.                                                                       |          |            |          |                        |  |  |  |  |  |  |  |  |
| Measured Value of the internal Sensor.  124 Temperature sensor: Switching output 2 Bytes R,C,T 9.001 temperature (°C)  External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                                                                                                                                                                                                                             | 123   | Temperature sensor: Measured                                                                           | Output   | 2 Bytes    | R,C,T    | 9.001 temperature (°C) |  |  |  |  |  |  |  |  |
| 124     Temperature sensor: Switching output, total     Output     2 Bytes     R,C,T     9.001 temperature (°C)       External measured value proportion of of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.       125     Temperature sensor: Min./max.     Input     1 Bit     W,C     1.017 trigger                                                                                                                                                                                                                                                                                                                                     |       | value                                                                                                  |          |            |          |                        |  |  |  |  |  |  |  |  |
| external measured value proportion of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N     | Measured Value of the internal Sensor                                                                  | •        |            |          |                        |  |  |  |  |  |  |  |  |
| External measured value proportion of the total Value (100% = Internal value is disgarded). If you want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124   | Temperature sensor: Switching                                                                          | Output   | 2 Bytes    | R,C,T    | 9.001 temperature (°C) |  |  |  |  |  |  |  |  |
| want to mix the temperature use another percentage setting.  125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | output, total                                                                                          |          |            |          |                        |  |  |  |  |  |  |  |  |
| 125 Temperature sensor: Min./max. Input 1 Bit W,C 1.017 trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Е     | External measured value proportion of of the total Value (100% = Internal value is disgarded). If you  |          |            |          |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | want  | want to mix the temperature use another percentage setting.                                            |          |            |          |                        |  |  |  |  |  |  |  |  |
| measurement query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125   | Temperature sensor: Min./max.                                                                          | Input    | 1 Bit      | w,c      | 1.017 trigger          |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | measurement query                                                                                      |          |            |          |                        |  |  |  |  |  |  |  |  |



## V5 K-BU5 KNX/EIB KNX GPS Weather Station Pro

Request the maximum and minimum wind value recorded. Writing a 1 to the communication object triggers the temperature sensor to report its minimum and maximum measured values to the KNX bus. 126 **Temperature sensor: Minimum** Output 2 Bytes R,C,T 9.001 temperature (°C) measurement Minimum Measured Value after Reset the bus send it back after requesting a query. 127 Output 2 Bytes Temperature sensor: Maximum R,C,T 9.001 temperature (°C) measurement Maximum Measured Value after Reset the bus send it back after requesting a query. 128 Input 1 Bit Temperature sensor: Min./max. W,C 1.017 trigger reading reset Min./Max values reset after requesting them using the Measurement query. (Obj. No. 125). 129 Temp. sensed: Measured value Output 2 Bytes R,C,T 9.001 temperature (°C) Felt temperature is according to wind chill and heat index, which account for wind and humidity to indicate how temperature feels to people.

Table 5.5 Communication object of "Temperature"



### 5.6 Communication object of "Temperature threshold value"

|            | Number | Name                                                 | Object Function | Description | Group Address | Length  | C | R   | W   | T   | U | Data Type        | Priority |
|------------|--------|------------------------------------------------------|-----------------|-------------|---------------|---------|---|-----|-----|-----|---|------------------|----------|
| <b>■</b> + | 131    | Temp. threshold value 1: Absolute value              | Input / Output  |             |               | 2 bytes | C | R   | W   | Т   |   | temperature (°C) | Low      |
| <b>#</b>   | 133    | Temp. threshold value 1: Switching delay from 0 to 1 | Input           |             |               | 2 bytes | C | -   | W   | -   | - | time (s)         | Low      |
| m2         | 134    | Temp. threshold value 1: Switching delay from 1 to 0 | Input           |             |               | 2 bytes | C | 30  | W   | 5   | - | time (s)         | Low      |
| m2         | 135    | Temp. threshold value 1: Switching output            | Output          |             |               | 1 bit   | C | R   | -   | Т   | - | switch           | Low      |
| <b>■≠</b>  | 136    | Temp. threshold value 1: Switching output block      | Input           |             |               | 1 bit   | C | 5   | W   | 5   |   | switch           | Low      |
| <b>■</b> → | 132    | Temp. threshold value 1: (1:+   0:-)                 | Input           |             |               | 1 bit   | ( | Ξ - | . 1 | ٧ - | - | step             | Low      |

Fig. 5.6 Communication object of "Temperature threshold value"

| NO.     | Name                             | Function          | Types      | Property    | DPT                           |
|---------|----------------------------------|-------------------|------------|-------------|-------------------------------|
| 131     | Temp. threshold value 1:         | Input/Output      | 2 Bytes    | R,W,C,T     | 9.001 temperature (°C)        |
|         | Absolute value                   |                   |            |             |                               |
| R       | eference point of setting and/o  | or reading the th | reshold va | alue 1.     |                               |
| 132     | Temp. threshold value 1:         | Input             | 1 Bit      | W,C         | 1.007 step                    |
|         | (1:+   0:-)                      |                   |            |             |                               |
| U       | sed to increment=1 or decrem     | ent=0 the Temp    | threshold  | value 1.    |                               |
| 133     | Temp. threshold value 1:         | Input             | 2 Bytes    | W,C         | 7.005 time(s)                 |
|         | Switching delay from 0 to 1      |                   |            |             |                               |
| Ir      | ndicating the time period in sec | conds that shou   | ld be exce | eded before | Obj.No. 135 changes from 0 to |
| 1, afte | er (Measured value is over Obj.  | No. 131).         |            |             |                               |
| 134     | Temp. threshold value 1:         | Input             | 2 Bytes    | w,c         | 7.005 time(s)                 |
|         | Switching delay from 1 to 0      |                   |            |             |                               |
| Ir      | ndicating the time period in sec | conds that shou   | ld be exce | eded before | Obj.No. 135 changes from 1 to |
| 0, afte | er (Measured value is under Ob   | j.No. 131).       |            |             |                               |
| 135     | Temp. threshold value 1:         | Output            | 1 Bit      | R,C,T       | 1.001 switch                  |
|         | Switching output                 |                   |            |             |                               |
| U       | sed to trigger actions if the    | measured valu     | ie is abov | e or under  | (considering the time delays) |

temperature threshold 1 (The telegram value is defined by the parameter "Output is at (TV=threshold value) (SD=Switching distance)").



| 136   | Temp. threshold value 1:      | Input           | 1 Bit      | W,C          | 1.001 switch                  |
|-------|-------------------------------|-----------------|------------|--------------|-------------------------------|
|       | Switching output block        |                 |            |              |                               |
| U     | sed to receive a binary state | to (block = 1 c | or allow = | 0 "default v | values") the switching output |
| based | on temperature threshold 1.   |                 |            |              |                               |

Table 5.6 Communication object of "Temperature threshold value"



# KNX/EIB KNX GPS Weather Station Pro

### 5.7 Communication object of "Frost alarm"

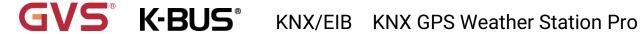




Fig.5.7 Communication object of "Frost alarm"

| NO. | Name        | Function | Types | Property | DPT          |
|-----|-------------|----------|-------|----------|--------------|
| 161 | Frost alarm | Output   | 1 Bit | R,C,T    | 1.001 switch |
|     |             |          |       |          |              |

Independet of the façade Frost alarm. Is set HIGH according to External Temperature, Time during or after precipitation. Is set LOW according to External Temperatue, if a duration time is exceeded. Value can be Inverted.

Table 5.7 Communication object of "Frost alarm"



### 5.8 Communication object of "Humidity measured value"

|                | Number | Name                                            | Object Function | Description | Group Address | Length  | C | R | W | T | U | Data Type    | Priority |
|----------------|--------|-------------------------------------------------|-----------------|-------------|---------------|---------|---|---|---|---|---|--------------|----------|
| <b>■</b>       | 391    | Humidity sensor: malfunction                    | Output          |             |               | 1 bit   | C | R | - | Т | 5 | switch       | Low      |
| ==             | 394    | Humidity sensor: external measured value        | Input           |             |               | 2 bytes | C | - | W | Т |   | humidity (%) | Low      |
| m <del>+</del> | 395    | Humidity sensor: internal measured value        | Output          |             |               | 2 bytes | C | R | - | Т | 5 | humidity (%) | Low      |
| m2             | 396    | Humidity sensor: total measured value           | Output          |             |               | 2 bytes | C | R | - | Т | - | humidity (%) | Low      |
| m+             | 397    | Humidity sensor: measured value min./max. query | Input           |             |               | 1 bit   | C | - | W | - | 5 | trigger      | Low      |
| ==             | 398    | Humidity sensor: minimum measured value         | Output          |             |               | 2 bytes | C | R | - | Т | - | humidity (%) | Low      |
| <b>■</b>       | 399    | Humidity sensor: maximum measured value         | Output          |             |               | 2 bytes | C | R | - | Т | 5 | humidity (%) | Low      |
| m+             | 400    | Humidity sensor: measured value min./max. reset | Input           |             |               | 1 bit   | C | 4 | W | _ | 4 | trigger      | Low      |
|                |        |                                                 |                 |             |               |         |   |   |   |   |   |              |          |

|       | Fig.5.8 Commu                     | unication ob | ject of "Hur | midity measu  | red value                          |
|-------|-----------------------------------|--------------|--------------|---------------|------------------------------------|
| NO.   | Name                              | Function     | Types        | Property      | DPT                                |
| 391   | Humidity sensor:                  | Output       | 1 Bit        | R,C,T         | 1.001 switch                       |
|       | Malfunction                       |              |              |               |                                    |
|       |                                   |              |              |               |                                    |
| lf.   | f enabled, it indicates if the hu | umidity sens | sor is expe  | eriencing an  | error (1 = malfunction, $0 = no$   |
| malfu | inction)                          |              |              |               |                                    |
| 394   | Humidity sensor: External         | Input        | 2 Bytes      | C,W,T         | 9.007 humidity(%)                  |
|       | measured value                    |              |              |               |                                    |
| ٧     | When enabled, it reads the value  | of an extern | al KNX Hur   | midity Sensor | r. If using an External Sensor the |
| value | s should be sent to this object.  |              |              |               |                                    |
| 395   | Humidity sensor: Measured         | Output       | 2 Bytes      | R,C,T         | 9.007 humidity(%)                  |
|       | value                             |              |              |               |                                    |
|       |                                   |              |              |               |                                    |
|       |                                   | l .          | l            |               |                                    |

Measured Value of the internal humidity sensor.

| 396 | Humidity sensor: Switching | Output | 2 Bytes | R,C,T | 9.007 humidity(%) |
|-----|----------------------------|--------|---------|-------|-------------------|
|     | output, total              |        |         |       |                   |
|     |                            |        |         |       |                   |

External measured value proportion of the total Value (100% = Internal value is disgarded). If you want to mix the humidity use another percentage setting.



| 397    | Humidity sensor: Min./max.        | Input        | 1 Bit        | W,C            | 1.017 trigger                 |
|--------|-----------------------------------|--------------|--------------|----------------|-------------------------------|
|        | measurement query                 |              |              |                |                               |
| R      | Request the maximum and mir       | nimum value  | e recorded   | . Writing a 1  | I to the communication object |
| trigge | ers the humidity sensor to report | ist maximui  | m and mini   | mum measu      | red values to the KNX bus.    |
| 398    | Humidity sensor: Minimum          | Output       | 2 Bytes      | R,C,T          | 9.007 humidity(%)             |
|        | measurement                       |              |              |                |                               |
| N      | Minimum Measured Value after F    | Reset the bu | s send it ba | ack after requ | uesting a query.              |
| 399    | Humidity sensor: Maximum          | Output       | 2 Bytes      | R,C,T          | 9.007 humidity(%)             |
|        | measurement                       |              |              |                |                               |
| N      | Maximum Measured Value after      | Reset the bu | ıs send it b | ack after req  | uesting a query.              |
| 400    | Humidity sensor: Min./max.        | Input        | 1 Bit        | W,C            | 1.017 trigger                 |
|        | reading reset                     |              |              |                |                               |
| N      | /lin./Max values reset after requ | esting them  | using the N  | Measurement    | t query. (Obj.No. 397 ).      |

Table 5.8 Communication object of "Humidity measured value



### 5.9 Communication object of "Humidity threshold value"

|           | Number | Name                                               | Object Function | Description | Group Address | Length  | C | R        | W | T | U | Data Type    | Priority |
|-----------|--------|----------------------------------------------------|-----------------|-------------|---------------|---------|---|----------|---|---|---|--------------|----------|
| m2        | 411    | Humidity threshold value 1: Absolute value         | Input / Output  |             |               | 2 bytes | C | R        | W | T | - | humidity (%) | Low      |
| m2        | 412    | Humidity threshold value 1: (1:+   0:-)            | Input           |             |               | 1 bit   | C | <u></u>  | W | _ | 2 | step         | Low      |
| m2        | 413    | Humidity threshold value 1: Delay from 0 to 1      | Input           |             |               | 2 bytes | C | -        | W | - | - | time (s)     | Low      |
| m <b></b> | 414    | Humidity threshold value 1: Delay from 1 to 0      | Input           |             |               | 2 bytes | C | <u>:</u> | W | _ | 2 | time (s)     | Low      |
| m2        | 415    | Humidity threshold value 1: Switching output       | Output          |             |               | 1 bit   | C | R        | - | Т | - | switch       | Low      |
| m7        | 416    | Humidity threshold value 1: Switching output block | Input           |             |               | 1 bit   | C | 0        | W | _ | 2 | switch       | Low      |

Fig. 5.9 Communication object of "Humidity threshold value"

| NO.     | Name                           | Function           | Types       | Propert     | DPT                              |
|---------|--------------------------------|--------------------|-------------|-------------|----------------------------------|
|         |                                |                    |             | у           |                                  |
| 411     | Humidity threshold value       | Input / Output     | 2 Bytes     | R,W,C,T     | 9.007 humidity(%)                |
|         | 1: Absolute value              |                    |             |             |                                  |
| F       | Reference point of setting and | d/or reading the I | Humidity tl | hreshold væ | llue 1.                          |
| 412     | Humidity threshold value       | Input              | 1 Bit       | W,C         | 1.007 step                       |
|         | 1: (1:+   0:-)                 |                    |             |             |                                  |
| ι       | Jsed to increment=1 or decre   | ement=0 the Hum    | idity thres | hold value  | 1.                               |
| 413     | Humidity threshold value       | Input              | 2 Bytes     | W,C         | 7.005 time(s)                    |
|         | 1: Delay from 0 to 1           |                    |             |             |                                  |
| lı      | ndicating the time period in s | seconds that sho   | uld be exc  | eeded befo  | re Obj.No. 415 changes from 0 to |
| 1, afte | er (Measured value is over O   | bj.No. 411 ).      |             |             |                                  |
| 414     | Humidity threshold value       | Input              | 2 Bytes     | W,C         | 7.005 time(s)                    |
|         | 1: Delay from 1 to 0           |                    |             |             |                                  |
| li      | ndicating the time period in s | seconds that sho   | uld be exc  | eeded befo  | re Obj.No. 415 changes from 1 to |
| 0, afte | er (Measured value is under (  | Obj.No. 411 ).     |             |             |                                  |
| 415     | Humidity threshold value       | Output             | 1 Bit       | R,C,T       | 1.001 switch                     |
|         | 1: Switching output            |                    |             |             |                                  |
| l       | Jsed to trigger actions if th  | ne measured val    | ue is abo   | ve or unde  | er (considering the time delays) |

tions if the measured value is above or under (considering the time delays) humidity threshold 1(The telegram value is defined by the parameter "Output is at (TV=threshold value)



| (SD=S | Switching distance)").         |               |            |           |                               |
|-------|--------------------------------|---------------|------------|-----------|-------------------------------|
| 416   | Humidity threshold value       | Input         | 1 Bit      | W,C       | 1.001 switch                  |
|       | 1: Switching output block      |               |            |           |                               |
| ι     | Jsed to receive a binary state | to (block = 1 | or allow = | 0 "defaul | values") the switching output |
| based | d on humidity threshold 1.     |               |            |           |                               |

Table 5.9 Communication object of "Humidity threshold value"



# 5.10 Communication object of "Dew point measured value"

|          | Number | Name                                              | Object Function | Description | Group Address | Length  | С | R   | W  | Т  | U  | Data Type        | Priority |
|----------|--------|---------------------------------------------------|-----------------|-------------|---------------|---------|---|-----|----|----|----|------------------|----------|
| m2       | 461    | Dew point: Measurement                            | Output          |             |               | 2 bytes | C | R   | 53 | Т  | 53 | temperature (°C) | Low      |
| m#       | 462    | Cooling medium temp.: Threshold value             | Output          |             |               | 2 bytes | C | R   | _  | T  | 2  | temperature (°C) | Low      |
| m2       | 463    | Cooling medium temp.: Actual value                | Input           |             |               | 2 bytes | C | R   | W  | T  | -  | temperature (°C) | Low      |
| m#       | 464    | Cooling medium temp.: Offset change (1:+   0:-)   | Input           |             |               | 1 bit   | C | 2   | W  | _  | _  | step             | Low      |
| m2       | 465    | Cooling medium temp.: Offset current              | Output          |             |               | 2 bytes | C | R   | -  | T  | -  | temperature (°C) | Low      |
| <b>#</b> | 466    | Cooling medium temp.: Switching delay from 0 to 1 | Input           |             |               | 2 bytes | C | 2 3 | W  | ្ន | _  | time (s)         | Low      |
| m2       | 467    | Cooling medium temp.: Switching delay from 1 to 0 | Input           |             |               | 2 bytes | C | -   | W  | -  | -  | time (s)         | Low      |
| <b>#</b> | 468    | Cooling medium temp.: Switching output            | Output          |             |               | 1 bit   | C | R   | _  | T  | _  | switch           | Low      |
| m2       | 469    | Cooling medium temp.: Switching output block      | Input           |             |               | 1 bit   | C | -   | W  | -  | -  | switch           | Low      |

Fig.5.10 Communication object of "Dew point measured value"

|     | Т                                 | 1            |                  |              | T                                  |
|-----|-----------------------------------|--------------|------------------|--------------|------------------------------------|
| NO. | Name                              | Function     | Types            | Property     | DPT                                |
| 461 | Dewpoint: Measured value          | Output       | 2 Bytes          | R,C,T        | 9.001 temperature (°C)             |
| A   | utomatically calculated dewp      | oint temper  | ı<br>ature value | and sent o   | n the bus.                         |
| 462 | Coolant temp.: Threshold          | Output       | 2 Bytes          | R,C,T        | 9.001 temperature (°C)             |
|     | value                             |              |                  |              |                                    |
| Ir  | nfo to air conditioning system    | (threshold v | /alue = mir      | nimum nomi   | nal value of coolant temperature). |
| 463 | Coolant temp.: Actual             | Input        | 2 Bytes          | R,W,C, T     | 9.001 temperature (°C)             |
|     | value                             |              |                  |              |                                    |
| S   | Surface temperature value mea     | sured.       | 1                |              |                                    |
| 464 | Coolant temp.: Offset             | Input        | 1 Bit            | W,C          | 1.007 step                         |
|     | change (1:+   0:- )               |              |                  |              |                                    |
| U   | Jsed to increment=1 or decrem     | nent=0 the 0 | Offset value     | e.           |                                    |
| 465 | Coolant temp.: Offset             | Output       | 2 Bytes          | R,C,T        | 9.001 temperature (°C)             |
|     | current                           |              |                  |              |                                    |
| О   | offset value used for altering th | ne threshold | l value, wh      | ere the Thre | shold value=Dew Point+Offset.      |
| 466 | Coolant temp.: Switching          | Input        | 2 Bytes          | W,C          | 7.005 time(s)                      |
|     | delay from 0 to 1                 |              |                  |              |                                    |



### KNX/EIB KNX GPS Weather Station Pro

Indicating the time period in seconds that should be exceeded before Obj.No. 468 changes from 0 to 1, after (Measured value is over Obj.No. 462).

| 467 | Coolant temp.: Switching | Input | 2 Bytes | W,C | 7.005 time(s) |
|-----|--------------------------|-------|---------|-----|---------------|
|     | delay from 1 to 0        |       |         |     |               |

Indicating the time period in seconds that should be exceeded before Obj.No. 468 changes from 1 to 0, after (Measured value is under Obj.No. 462).

| 468 | Coolant temp.: Switching | Output | 1 Bit | R,C,T | 1.001 switch |
|-----|--------------------------|--------|-------|-------|--------------|
|     | output                   |        |       |       |              |

Used to trigger actions if the measured value is above or under (considering the time delays) coolant temp threshold (The telegram value is defined by the parameter "Output is at (TV=threshold value) (SD=Switching distance)").

| 469 | Coolant temp.: Switching | Input | Bit | W,C1 | 1.001 switch |
|-----|--------------------------|-------|-----|------|--------------|
|     | output block             |       |     |      |              |

Used to receive a binary state to (block = 1 or allow = 0 "default values") the switching output based on coolant temp threshold.

Table 5.10 Communication object of "Dew point measured value"



# 5.11 Communication object of "Absolute humidity"

|    | Number | Name                     | Object Function | Description | Group Address | Length  | C | R | W  | T | U  | Data Type          | Priority |
|----|--------|--------------------------|-----------------|-------------|---------------|---------|---|---|----|---|----|--------------------|----------|
| m2 | 471    | Absolute humidity [g/kg] | Output          |             |               | 4 bytes | C | R | -  | Т | -  | amplitude          | Low      |
| m2 | 472    | Absolute humidity [g/m³] | Output          |             |               | 2 bytes | C | R | 28 | Т | 28 | 2-byte float value | Low      |

Fig.5.11 Communication object of "Absolute humidity"

| NO. | Name                                                             | Function | Types   | Property | DPT                   |  |  |  |  |  |
|-----|------------------------------------------------------------------|----------|---------|----------|-----------------------|--|--|--|--|--|
| 471 | Absolute humidity [g/kg]                                         | Output   | 4 Bytes | R,C,T    | 14.005 amplitude      |  |  |  |  |  |
|     |                                                                  |          |         |          |                       |  |  |  |  |  |
| A   | Absolute Air Humidity Value detected and sent to the bus [g/kg]. |          |         |          |                       |  |  |  |  |  |
| 472 | Absolute humidity [g/m³]                                         | Output   | 4 Bytes | R,C,T    | 9.*2-byte float value |  |  |  |  |  |
|     |                                                                  |          |         |          |                       |  |  |  |  |  |
| A   | Absolute Air Humidity Value detected and sent to the bus [g/m³]. |          |         |          |                       |  |  |  |  |  |

Table 5.11 Communication object of "Absolute humidity"



# 5.12 Communication object of "Comfort field"

|            | Number | Name                                               | Object Function | Description | Group Address | Length   | C | R | W | T | U | Data Type                | Priority |
|------------|--------|----------------------------------------------------|-----------------|-------------|---------------|----------|---|---|---|---|---|--------------------------|----------|
| <b>■</b> ₹ | 474    | Ambient climate status: 1=comfortable 0=uncomfort. | Output          |             |               | 1 bit    | C | R | - | Т | - | switch                   | Low      |
| ##         | 475    | Ambient climate status: Text                       | Output          |             |               | 14 bytes | C | R | 2 | Т | 2 | Character String (ASCII) | Low      |

Fig. 5.12 Communication object of "Comfort field"

| NO. | Name                                        | Function        | Types     | Property      | DPT                    |  |  |  |  |
|-----|---------------------------------------------|-----------------|-----------|---------------|------------------------|--|--|--|--|
| 474 | Ambient climate status: 1 =                 | Output          | 1 Bit     | R-CT          | 1.001 switch           |  |  |  |  |
|     | comfortable   0 = uncomfortable             |                 |           |               |                        |  |  |  |  |
| Т   | he comfort field refers to a predefined ran | ge of condition | ons, spec | ifically temp | perature and humidity. |  |  |  |  |
| 475 | Ambient climate status: Text                | Output          | 14        | R-CT          | 16.000 Character       |  |  |  |  |
|     |                                             |                 | Bytes     |               | String (ASCII)         |  |  |  |  |
| Т   | Text output for the two comfort fields.     |                 |           |               |                        |  |  |  |  |

Table 5.12 Communication object of "Comfort field"



# K-BUS<sup>®</sup> KNX/EIB KNX GPS Weather Station Pro

### 5.13 Communication object of "Brightness"



Fig.5.13 Communication object of "Brightness"

| No. | Name                          | Function | Types | Property | DPT             |
|-----|-------------------------------|----------|-------|----------|-----------------|
| 175 | Brightness sensor measurement | Output   | R,C,T | 2 Bytes  | 9.004 lux (Lux) |
|     |                               |          |       |          |                 |

Send the highest currently measured value of the five internal Bright. sensors on the bus.

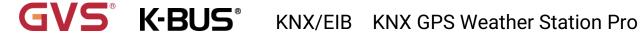
Table 5.13 Communication object of "Brightness"



### 5.14 Communication object of "Brightness threshold values"

|    | Number | Name                                            | Object Function | Description | Group Address | Length  | C | R  | W   | T  | U | Data Type | Priority |
|----|--------|-------------------------------------------------|-----------------|-------------|---------------|---------|---|----|-----|----|---|-----------|----------|
| m2 | 181    | Brightness sensor TLV 1: Absolute value         | Input / Output  |             |               | 2 bytes | C | R  | W   | T  | E | lux (Lux) | Low      |
| m# | 182    | Brightness sensor TLV 1: (1:+   0:-)            | Input           |             |               | 1 bit   | C | 2  | W   | 20 | _ | step      | Low      |
| mŻ | 183    | Brightness sensor TLV 1: Delay from 0 to 1      | Input           |             |               | 2 bytes | C |    | W   | -  | E | time (s)  | Low      |
| m# | 184    | Brightness sensor TLV 1: Delay from 1 to 0      | Input           |             |               | 2 bytes | C | 28 | W   | 2  | 0 | time (s)  | Low      |
| m2 | 185    | Brightness sensor TLV 1: Switching output       | Output          |             |               | 1 bit   | C | R  | e i | Т  | E | switch    | Low      |
| m2 | 186    | Brightness sensor TLV 1: Switching output block | Input           |             |               | 1 bit   | C | 2  | W   | 2  | ੂ | switch    | Low      |

Fig. 5.14 Communication object of "Brightness threshold values"


| NO.    | Name                                                                                          | Function         | Types        | Property    | DPT                           |  |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------|------------------|--------------|-------------|-------------------------------|--|--|--|--|--|--|
| 181    | Bright. threshold value 1:                                                                    | Input/Output     | R,W,C,T      | 2 Bytes     | 9.004 lux (Lux)               |  |  |  |  |  |  |
|        | Absolute value                                                                                |                  |              |             |                               |  |  |  |  |  |  |
| F      | Reference point of setting and/or reading the bright. threshold value 1.                      |                  |              |             |                               |  |  |  |  |  |  |
| 182    | Bright. threshold value 1:                                                                    | Input            | W,C          | 1 Bit       | 1.007 step                    |  |  |  |  |  |  |
|        | (1:+   0:-)                                                                                   |                  |              |             |                               |  |  |  |  |  |  |
| ι      | Jsed to increment=1 or decren                                                                 | nent=0 the brigh | t. threshold | l value 1.  |                               |  |  |  |  |  |  |
| 183    | Bright. threshold value 1:                                                                    | Input            | W,C          | 2 Bytes     | 7.005 time(s)                 |  |  |  |  |  |  |
|        | Delay from 0 to 1                                                                             |                  |              |             |                               |  |  |  |  |  |  |
| I      | ndicating the time period in se                                                               | conds that shou  | ld be excee  | eded before | Obj.No. 185 changes from 0 to |  |  |  |  |  |  |
| 1, aft | er (Measured value is over Obj                                                                | .No. 181 ).      |              |             |                               |  |  |  |  |  |  |
| 184    | Bright. threshold value 1:                                                                    | Input            | W,C          | 2 Bytes     | 7.005 time(s)                 |  |  |  |  |  |  |
|        | Delay from 1 to 0                                                                             |                  |              |             |                               |  |  |  |  |  |  |
| I      | ndicating the time period in se                                                               | conds that shou  | ld be excee  | eded before | Obj.No. 185 changes from 1 to |  |  |  |  |  |  |
| 0, aft | er (Measured value is under O                                                                 | bj.No. 181 ).    |              |             |                               |  |  |  |  |  |  |
| 185    | Bright. threshold value 1:                                                                    | Output           | R,C,T        | 1 Bit       | 1.001 switch                  |  |  |  |  |  |  |
|        | Switching output                                                                              |                  |              |             |                               |  |  |  |  |  |  |
| l      | Used to trigger actions if the measured value is above or under (considering the time delays) |                  |              |             |                               |  |  |  |  |  |  |

1(The telegram value is defined by the parameter "Output is at (TV=threshold value) threshold (SD=Switching distance)").



| 186  | Bright. threshold value 1:     | Input           | W,C          | 1 Bit        | 1.001 switch                 |
|------|--------------------------------|-----------------|--------------|--------------|------------------------------|
|      | Switching output block         |                 |              |              |                              |
| l    | Used to receive a binary state | to (block = 1 o | or allow = ( | 0 "default v | alues") the switching output |
| base | d on brightness threshold 1.   |                 |              |              |                              |

Table 5.14 Communication object of "Brightness threshold values"



### 5.15 Communication object of "Brightness, TV twilight sensor"

|                | Number | Name                                               | Object Function | Description | Group Address | Length  | C | R  | W | T | U       | Data Type | Priority |
|----------------|--------|----------------------------------------------------|-----------------|-------------|---------------|---------|---|----|---|---|---------|-----------|----------|
| m2             | 293    | Twilight brightness TLV 1: Absolute value          | Input / Output  |             |               | 2 bytes | C | R  | W | T | -       | lux (Lux) | Low      |
| m-             | 294    | Twilight brightness threshold value 1: (1:+   0:-) | Input           |             |               | 1 bit   | C | 25 | W | 2 | <u></u> | step      | Low      |
| m2             | 295    | Twilight brightness threshold 1: delay from 0 to 1 | Input           |             |               | 2 bytes | C | -  | W | - | -       | time (s)  | Low      |
| m <del>2</del> | 296    | Twilight brightness threshold 1: delay from 1 to 0 | Input           |             |               | 2 bytes | C | 20 | W | 2 | 100     | time (s)  | Low      |
| m2             | 297    | Twilight brightness TLV 1: Switching output        | Output          |             |               | 1 bit   | C | R  | - | Т | -       | switch    | Low      |
| m2             | 298    | Twilight brightness TLV 1: Switching output block  | Input           |             |               | 1 bit   | C | 2  | W | 2 | 10      | switch    | Low      |

Fig.5.15 Communication object of "Brightness, TV twilight sensor"

|          |                                                                                               | tion object of E  |             |             |                           |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------|-------------------|-------------|-------------|---------------------------|--|--|--|--|--|
| NO.      | Name                                                                                          | Function          | Types       | Property    | DPT                       |  |  |  |  |  |
| 293      | Twilight brightness threshold                                                                 | Input/Output      | R,W,C,T     | 2 Bytes     | 9.004 lux (Lux)           |  |  |  |  |  |
|          | value 1: Absolute value                                                                       |                   |             |             |                           |  |  |  |  |  |
| R        | Reference point of setting and/or re                                                          | ading Twilight t  | hreshold va | lue 1.      |                           |  |  |  |  |  |
| 294      | Twilight brightness threshold 1:                                                              | Input             | W,C         | 1 Bit       | 1.007 step                |  |  |  |  |  |
|          | (1:+   0:-)                                                                                   |                   |             |             |                           |  |  |  |  |  |
| L        | Jsed to increment=1 or decrement=                                                             | 0 the Twilight th | nreshold va | lue 1.      |                           |  |  |  |  |  |
| 295      | Twilight brightness threshold 1:                                                              | Input             | W,C         | 2 Bytes     | 7.005 time(s)             |  |  |  |  |  |
|          | delay from 0 to 1                                                                             |                   |             |             |                           |  |  |  |  |  |
| lı       | Indicating the time period in seconds that should be exceeded before Obj.No. 297.             |                   |             |             |                           |  |  |  |  |  |
| 296      | Twilight brightness threshold 1:                                                              | Input             | W,C         | 2 Bytes     | 7.005 time(s)             |  |  |  |  |  |
|          | delay from 1 to 0                                                                             |                   |             |             |                           |  |  |  |  |  |
| lı       | ndicating the time period in second                                                           | s that should be  | exceeded    | before Obj. | No. 297 changes from 1 to |  |  |  |  |  |
| 0, afte  | er (Measured value is under Obj.No                                                            | . 293 ).          |             |             |                           |  |  |  |  |  |
| 297      | Twilight brightness threshold                                                                 | Output            | R,C,T       | 1 Bit       | 1.001 switch              |  |  |  |  |  |
|          | value 1: Switching output                                                                     |                   |             |             |                           |  |  |  |  |  |
| L        | Used to trigger actions if the measured value is above or under (considering the time delays) |                   |             |             |                           |  |  |  |  |  |
| threst   | nold 1(The telegram value is de                                                               | efined by the     | parameter   | "Output is  | at (TV=threshold value)   |  |  |  |  |  |
| (SD=S    | Switching distance)").                                                                        |                   |             |             |                           |  |  |  |  |  |
| 298      | Twilight brightness threshold                                                                 | Input             | W,C         | 1 Bit       | 1.001 switch              |  |  |  |  |  |
| <u>i</u> | 1                                                                                             | 1                 | 1           | I.          |                           |  |  |  |  |  |



|       | value 1: Switching output block                                                                  |  |  |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| U     | Used to receive a binary state to (block = 1 or allow = 0 "default values") the switching output |  |  |  |  |  |  |  |
| based | based on twilight threshold 1.                                                                   |  |  |  |  |  |  |  |

Table5.15 Communication object of "Brightness, TV twilight sensor"



# 5.16 Communication object of "Night"

|            | Number | <sup>•</sup> Name               | Object Function | Description | Group Address | Length  | C | R | W | T | U   | Data Type | Priority |
|------------|--------|---------------------------------|-----------------|-------------|---------------|---------|---|---|---|---|-----|-----------|----------|
| <b>■</b> → | 331    | Night: Switching output         | Output          |             |               | 1 bit   | C | R | 4 | Т | ×   | switch    | Low      |
| m#         | 332    | Night: Switching delay to night | Input           |             |               | 2 bytes | C | - | W | - | -   | time (s)  | Low      |
| m#         | 333    | Night: Switching delay on day   | Input           |             |               | 2 bytes | C | - | W | 4 | ii. | time (s)  | Low      |

Fig.5.16 Communication object of "Night"

| No. | Name                                                                                               | Function | Types | Property | DPT           |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------|----------|-------|----------|---------------|--|--|--|--|--|
| 331 | Night: Switching output                                                                            | Output   | R,C,T | 1 Bit    | 1.001 switch  |  |  |  |  |  |
| L   | Used to detect Night when illumination is less than or equal a set value in Lux .                  |          |       |          |               |  |  |  |  |  |
| 332 | Night: Switching delay on night                                                                    | Input    | W,C   | 2 Bytes  | 7.005 time(s) |  |  |  |  |  |
| D   | Delay time in sec for output Obj.No. 332 when brightness value is Less than or equal Obj.No. 331 . |          |       |          |               |  |  |  |  |  |
| 333 | Night: Switching delay on day                                                                      | Input    | W,C   | 2 Bytes  | 7.005 time(s) |  |  |  |  |  |
| D   | Delay time in sec for output Obj.No. 332 when brightness value is higher than Obj.No. 331.         |          |       |          |               |  |  |  |  |  |

Table 5.16 Communication object of "Night"



### 5.17 Communication object of "Sun position"

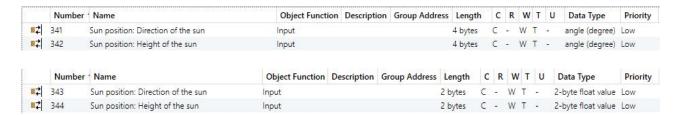



Fig.5.17 Communication object of "Sun position"

| NO. | Name                                                                       | Function              | Types        | Property   | DPT                   |  |  |  |  |  |
|-----|----------------------------------------------------------------------------|-----------------------|--------------|------------|-----------------------|--|--|--|--|--|
| 341 | Sun position: Azimuth                                                      | Output                | R-CT         | 4 Bytes    | 14.007 angle (degree) |  |  |  |  |  |
|     |                                                                            |                       |              |            |                       |  |  |  |  |  |
| Red | ceived Value of Sun Azimuth A                                              | Angle in Degrees (4 b | ytes floatir | ng point). |                       |  |  |  |  |  |
| 342 | Sun position: Elevation                                                    | Output                | R-CT         | 4 Bytes    | 14.007 angle (degree) |  |  |  |  |  |
|     |                                                                            |                       |              |            |                       |  |  |  |  |  |
| Red | Received Value of Sun Elevation Angle in Degrees (4 bytes floating point). |                       |              |            |                       |  |  |  |  |  |
| 343 | Sun position: Azimuth                                                      | Output                | R-CT         | 2 Bytes    | 9.*2-byte float value |  |  |  |  |  |
|     |                                                                            |                       |              |            |                       |  |  |  |  |  |
| Red | Received Value of Sun Azimuth Angle in Degrees (2 bytes floating point).   |                       |              |            |                       |  |  |  |  |  |
| 344 | Sun position: Elevation                                                    | Output                | R-CT         | 2 Bytes    | 9.*2-byte float value |  |  |  |  |  |
|     |                                                                            |                       |              |            |                       |  |  |  |  |  |
| Red | Received Value of Sun Elevation Angle in Degrees (2 bytes floating point). |                       |              |            |                       |  |  |  |  |  |

Table5.17 Communication object of "Sun position"



# 5.18 Communication object of "Wind measurement"

|            | Number | Name                                        | Object Function | Description | Group Address | Length  | C | R | W  | T | U  | Data Type              | Priority |
|------------|--------|---------------------------------------------|-----------------|-------------|---------------|---------|---|---|----|---|----|------------------------|----------|
| m7         | 351    | Wind sensor: Malfunction                    | Output          |             |               | 1 bit   | C | R | -  | T | -3 | switch                 | Low      |
| m-         | 352    | Wind sensor: Measurement [m/s]              | Output          |             |               | 2 bytes | C | R | 2  | Т | 20 | speed (m/s)            | Low      |
| m7         | 353    | Wind sensor: Measurement [Beaufort]         | Output          |             |               | 1 byte  | C | R | -  | T | +  | wind force scale (012) | Low      |
| <b>■</b> → | 354    | Wind sensor: Max. query measurement         | Input           |             |               | 1 bit   | C | 2 | W  | 2 | 2  | 1-bit, trigger         | Low      |
| m#         | 355    | Wind sensor: Maximum measurement [m/s]      | Output          |             |               | 2 bytes | C | R | -3 | Т | -  | speed (m/s)            | Low      |
| m+         | 356    | Wind sensor: Maximum measurement [Beaufort] | Output          |             |               | 1 byte  | C | R | 27 | T | 2  | wind force scale (012) | Low      |
| m2         | 357    | Wind sensor: Max. reset measurement         | Input           |             |               | 1 bit   | C | _ | W  | _ | -  | triager                | Low      |

Fig.5.18 Communication object of "Wind measurement"

| No.   | Name                                | Function    | Types      | Property     | DPT                             |
|-------|-------------------------------------|-------------|------------|--------------|---------------------------------|
| 351   | Wind sensor: Malfunction            | Output      | R,C,T      | 1 Bit        | 1.001 switch                    |
|       |                                     |             |            |              |                                 |
| If    | enabled, it indicates if the wir    | nd sensor i | s experie  | encing an e  | rror (1 = malfunction, 0 = no   |
| malfu | nction)                             |             |            |              |                                 |
| 352   | Wind sensor: Measurement            | Output      | R,C,T      | 2 Bytes      | 9.005 speed (m/s)               |
|       | [m/s]                               |             |            |              |                                 |
| N     | Measured value of wind speed in m   | /s.         |            |              |                                 |
| 353   | Wind sensor: Measurement            | Output      | R,C,T      | 1 Byte       | 20.014 wind force scale         |
|       | [Beaufort]                          |             |            |              | (012)                           |
| ٧     | Vind speed data in (m/s) in which i | s converted | into the E | Beaufort sca | le rating (From 0> 12 ).        |
| 354   | Wind sensor: Measurement,           | Input       | W,C        | 1 Bit        | 1.017 trigger                   |
|       | max. query                          |             |            |              |                                 |
| R     | Request the maximum wind value      | recorded. V | Writing a  | 1 to the cor | nmunication object triggers the |
| wind  | sensor to report ist maximum mea    | sured value | to the KN  | IX bus.      |                                 |
| 355   | Wind sensor: Maximum                | Output      | R,C,T      | 2 Bytes      | 9.005 speed (m/s)               |
|       | measurement [m/s]                   |             |            |              |                                 |
| N     | Max wind speed measured in m/s.     |             |            |              |                                 |
| 356   | Wind sensor: Maximum                | Output      | R,C,T      | 1 Byte       | 20.014 wind force scale         |
|       |                                     |             |            |              |                                 |



|     | measurement [Beaufort]               |       |     |       | (012)         |  |  |  |  |
|-----|--------------------------------------|-------|-----|-------|---------------|--|--|--|--|
| N   | Max wind speed measured in Beaufort. |       |     |       |               |  |  |  |  |
| 357 | Wind sensor: Measured value          | Input | W,C | 1 Bit | 1.017 trigger |  |  |  |  |
|     | max. reset                           |       |     |       |               |  |  |  |  |
| F   | Reset Max wind value recorded.       |       |     |       |               |  |  |  |  |

Table 5.18 Communication object of "Wind measure"



### 5.19 Communication object of "Wind threshold values"

|            | Number | Name                                           | Object Function Description | Group Address | Length  | C | R | W | Т | U                 | Data Type                      | Priority |
|------------|--------|------------------------------------------------|-----------------------------|---------------|---------|---|---|---|---|-------------------|--------------------------------|----------|
| m->        | 361    | Wind threshold value 1: Absolute value         | Input / Output              |               | 2 bytes | C | R | W | T | 978               | speed (m/s), wind speed (km/h) | Low      |
| <b>■</b> ≠ | 362    | Wind threshold value 1: (1:+   0:-)            | Input                       |               | 1 bit   | C | ु | W | 0 | _                 | step                           | Low      |
| m.         | 363    | Wind threshold value 1: Delay from 0 to 1      | Input                       |               | 2 bytes | C | - | W | - | ? <del>=</del> (3 | time (s)                       | Low      |
| ==         | 364    | Wind threshold value 1: Delay from 1 to 0      | Input                       |               | 2 bytes | C | ः | W | ु | 2                 | time (s)                       | Low      |
| m-         | 365    | Wind threshold value 1: Switching output       | Output                      |               | 1 bit   | C | R | - | T | 750               | switch                         | Low      |
| m2         | 366    | Wind threshold value 1: Switching output block | Input                       |               | 1 bit   | C | _ | W | _ | _                 | switch                         | Low      |

Fig.5.19 Communication object of "Wind threshold values"

| NO.     | Name                         | Function          | Types      | Property     | DPT                                 |
|---------|------------------------------|-------------------|------------|--------------|-------------------------------------|
| 361     | Wind threshold value 1:      | Input/Output      | RWCT       | 2 Bytes      | 9.005 speed (m/s)                   |
|         | Absolute value               |                   |            |              | 9.008 speed (km/h)                  |
| F       | Reference point of setting a | and/or reading th | ne wind th | reshold valu | ue 1.                               |
| 362     | Wind threshold value 1:      | Input             | wc         | 1 Bit        | 1.007 step                          |
|         | (1:+   0:-)                  |                   |            |              |                                     |
| ι       | Jsed to increment=1 or dec   | crement=0 the w   | ind thresl | nold value 1 |                                     |
| 363     | Wind threshold value 1:      | Input             | wc         | 2 Bytes      | 7.005 time(s)                       |
|         | Delay from 0 to 1            |                   |            |              |                                     |
| I.      | ndicating the time period in | n seconds that s  | hould be   | exceeded b   | efore Obj.No. 365 changes from 0 to |
| 1, afte | er (Measured value is over   | Obj.No. 361 ).    |            |              |                                     |
| 364     | Wind threshold value 1:      | Input             | wc         | 2 Bytes      | 7.005 time(s)                       |
|         | Delay from 1 to 0            |                   |            |              |                                     |
| I       | ndicating the time period in | n seconds that s  | hould be   | exceeded b   | efore Obj.No. 365 changes from 1 to |
| 0, afte | er (Measured value is unde   | er Obj.No. 361 ). |            |              |                                     |
| 365     | Wind threshold value 1:      | Output            | R-CT       | 1 Bit        | 1.001 switch                        |
|         | Switching output             |                   |            |              |                                     |
| ι       | Jsed to trigger actions if t | he measured va    | lue is abo | ve or under  | (considering the time delays) wind  |
|         |                              |                   |            |              |                                     |

threshold 1(The telegram value is defined by the parameter "Output is at (TV=threshold value) (SD=Switching distance)").



| 366 | Wind threshold value 1: | Input | wc | 1 Bit | 1.001 switch |
|-----|-------------------------|-------|----|-------|--------------|
|     | Switching output block  |       |    |       |              |

Used to receive a binary state to (block = 1 or allow = 0 "default values") the switching output based on wind threshold 1.

Table5.19 Communication object of "Wind threshold values"



# 5.20 Communication object of "Wind direction"

|            | Number | <sup>4</sup> Name                               | Object Function | Description | Group Address | Length   | C | R | W | T | U | Data Type                | Priority |
|------------|--------|-------------------------------------------------|-----------------|-------------|---------------|----------|---|---|---|---|---|--------------------------|----------|
| <b>#</b> 2 | 1890   | Wind direction: Measured value [cardinal point] | Output          |             |               | 14 bytes | C | R | - | Г | - | Character String (ASCII) | Low      |
| <b>#</b>   | 1891   | Wind direction measured value [°]               | Output          |             |               | 1 byte   | C | R |   | Г | - | angle (degrees)          | Low      |
| <b>#</b> 2 | 1892   | Wind direction North                            | Output          |             |               | 1 bit    | C | R | - | Т | _ | boolean                  | Low      |
| ==         | 1893   | Wind direction North-East                       | Output          |             |               | 1 bit    | C | R |   | Г | - | boolean                  | Low      |
| <b>#</b> 2 | 1894   | Wind direction East                             | Output          |             |               | 1 bit    | C | R | - | Г | - | boolean                  | Low      |
| <b>#</b> 2 | 1895   | Wind direction South-East                       | Output          |             |               | 1 bit    | C | R |   | Г | - | boolean                  | Low      |
| <b>#</b>   | 1896   | Wind direction South                            | Output          |             |               | 1 bit    | C | R | - | Г | _ | boolean                  | Low      |
| <b>#</b>   | 1897   | Wind direction South-West                       | Output          |             |               | 1 bit    | C | R |   | Г | 5 | boolean                  | Low      |
| ==         | 1898   | Wind direction West                             | Output          |             |               | 1 bit    | C | R | - | Т | _ | boolean                  | Low      |
| =2         | 1899   | Wind direction North-West                       | Output          |             |               | 1 bit    | C | R |   | Г | - | boolean                  | Low      |

Fig.5.20 Communication object of "Wind direction"

| NO.    | Name                                                | Function     | Types        | Property     | DPT                        |
|--------|-----------------------------------------------------|--------------|--------------|--------------|----------------------------|
| 1890   | Wind direction: Measurement                         | Output       | 14 Bytes     | R,C,T        | 16.000 Character String    |
|        | [compass direction]                                 |              |              |              | (ASCII)                    |
| W      | /ind direction sent as text (9 cases).              |              |              |              |                            |
| 1891   | Wind direction measurement [°]                      | Output       | 1 Byte       | R,C,T        | 5.003 angle (degrees)      |
| W      | /ind direction measured value sent o                | on the bus i | n Degrees (1 | byte object  | t).                        |
| 1892   | Wind direction north                                | Output       | 1 Bit        | R,C,T        | 1.002 boolean              |
| "North | n(0°) if active, send:")  Wind direction North-East | Outnut       | 1 Bit        | рст          | 1.002 boolean              |
| 1093   | wind direction North-East                           | Output       | I BIL        | R,C,T        | 1.002 boolean              |
| lf     | the wind direction is "North-Eas-                   | t", The Out  | put is 0/1.  | (The telegra | nm value is defined by the |
| param  | neter "North-East(45°) if active, send              | l:")         |              |              |                            |
| 1894   | Wind direction east                                 | Output       | 1 Bit        | R,C,T        | 1.002 boolean              |
| If th  | ne wind direction is "East", The O                  | utput is 0/1 | (The teleg   | ram value i  | s defined by the parameter |
| "East( | 90°) if active, send:")                             |              |              |              |                            |
| 1895   | Wind direction South-East                           | Output       | 1 Bit        | R,C,T        | 1.002 boolean              |



# **K-BUS** KNX/EIB KNX GPS Weather Station Pro

If the wind direction is "South-East", The Output is 0/1.(The telegram value is defined by the parameter "South East(135°) if active, send:")

| 1896  | Wind direction south               | Output       | 1 Bit        | R,C,T      | 1.002 boolean               |
|-------|------------------------------------|--------------|--------------|------------|-----------------------------|
| If th | e wind direction is "South", The C | Output is 0/ | 1.(The teleg | ıram value | is defined by the parameter |

"South(180°) if active, send:")

| 1897 | Wind direction South-West | Output | 1 Bit | R,C,T | 1.002 boolean |
|------|---------------------------|--------|-------|-------|---------------|
|------|---------------------------|--------|-------|-------|---------------|

If the wind direction is "South-West", The Output is 0/1.(The telegram value is defined by the parameter "South-West(225°) if active, send:")

| 1898   | Wind direction west               | Output       | 1 Bit       | R,C,T      | 1.002 boolean               |
|--------|-----------------------------------|--------------|-------------|------------|-----------------------------|
| If     | the wind direction is "West", The | Output is 0/ | 1.(The tele | gram value | is defined by the parameter |
| "West( | (270°) if active, send:")         |              |             |            |                             |

If the wind direction is "North-West", The Output is 0/1.(The telegram value is defined by the parameter "North-West(315°) if active, send:")

Table 5.20 Communication object of "Wind direction"



# 5.21 Communication object of "Wind direction ranges"

|            | Number | Name                                                 | <b>Object Function</b> | Description | Group Address | Length  | C | R | W | T   | U | Data Type      | Priority |
|------------|--------|------------------------------------------------------|------------------------|-------------|---------------|---------|---|---|---|-----|---|----------------|----------|
| m2         | 1904   | Wind direction: Range 1 Switching output             | Output                 |             |               | 1 bit   | C | R |   | Г   | - | switch         | Low      |
| <b>#</b>   | 1905   | Wind direction range value 1: Delay from 0 to 1      | Input                  |             |               | 2 bytes | C | _ | W | -   | _ | time (s)       | Low      |
| m2         | 1906   | Wind direction range value 1: Delay from 1 to 0      | Input                  |             |               | 2 bytes | C | - | W | -8  |   | time (s)       | Low      |
| <b>#</b> # | 1907   | Wind direction range value 1 from: (1:+   0:-)       | Input                  |             |               | 1 bit   | C | - | W | -   | _ | step           | Low      |
| m2         | 1908   | Wind direction range value 1 up to: (1:+   0:-)      | Input                  |             |               | 1 bit   | C | - | W | -83 | - | step           | Low      |
| <b>#</b>   | 1909   | Wind direction range value 1 from: Absolute value    | Input / Output         |             |               | 4 bytes | C | R | W | Т   | _ | angle (degree) | Low      |
| m2         | 1910   | Wind direction range value 1 up to: Absolute value   | Input / Output         |             |               | 4 bytes | C | R | W | Т   | - | angle (degree) | Low      |
| m#         | 1911   | Wind direction range value 1: Switching output block | Input                  |             |               | 1 bit   | C | _ | W |     | 2 | switch         | Low      |

|           | Fig.5.21 Communication object of "Wind direction ranges" |                    |            |               |                                |  |  |  |  |  |  |
|-----------|----------------------------------------------------------|--------------------|------------|---------------|--------------------------------|--|--|--|--|--|--|
| NO.       | Name                                                     | Function           | Types      | Property      | DPT                            |  |  |  |  |  |  |
| 1904      | Wind direction: Range 1                                  | Output             | 1 Bit      | R,C,T         | 1.001 switch                   |  |  |  |  |  |  |
|           | Switching output                                         | put                |            |               |                                |  |  |  |  |  |  |
| Us        | sed to trigger actions if the mo                         | easured value is   | in the set | range (cons   | idering the time delays). Wind |  |  |  |  |  |  |
| direction | on range ß.(The telegram valu                            | e is defined by th | e paramet  | ter "Output i | s at(TV=threshold value)(SD=   |  |  |  |  |  |  |
| Switch    | Switching distance)")                                    |                    |            |               |                                |  |  |  |  |  |  |
| 1905      |                                                          |                    |            |               |                                |  |  |  |  |  |  |

|                                                                              | 9 , ,                         |                  |             |             |                         |  |  |  |  |  |  |
|------------------------------------------------------------------------------|-------------------------------|------------------|-------------|-------------|-------------------------|--|--|--|--|--|--|
| 1905                                                                         | Wind direction range value    | Input            | 2 Bytes     | W,C         | 7.005 time (s)          |  |  |  |  |  |  |
|                                                                              | 1: Delay from 0 to 1          |                  |             |             |                         |  |  |  |  |  |  |
| Ti                                                                           | me period that should be exce | eded before Obj. | No. 1904    | changes fro | m 0 to 1.               |  |  |  |  |  |  |
| 1906                                                                         | Wind direction range value    | Input            | 2 Bytes     | W,C         | 7.005 time (s)          |  |  |  |  |  |  |
|                                                                              | 1: Delay from 1 to 0          |                  |             |             |                         |  |  |  |  |  |  |
| Time period that should be exceeded before Obj.No. 1904 changes from 1 to 0. |                               |                  |             |             |                         |  |  |  |  |  |  |
| 1907                                                                         | Wind direction range value    | Input            | 1 Bit       | W,C         | 1.007 step              |  |  |  |  |  |  |
|                                                                              | 1 from: (1:+   0:-)           |                  |             |             |                         |  |  |  |  |  |  |
| Us                                                                           | sed to increment=1 or decrem  | ent=0 the Wind d | irection ra | nge ß "From | n" value 1, 1bit value. |  |  |  |  |  |  |
| 1908                                                                         | Wind direction range value    | Input            | 1 Bit       | w,c         | 1.007 step              |  |  |  |  |  |  |
|                                                                              | 1 up to: (1:+   0:-)          |                  |             |             |                         |  |  |  |  |  |  |
| Us                                                                           | sed to increment=1 or decrem  | ent=0 the Wind d | irection ra | nge "Up to" | value 1, 1bit value.    |  |  |  |  |  |  |
| 1000                                                                         | \A(!                          |                  | 4 Durbon    | DWOT        | 14.007                  |  |  |  |  |  |  |

| 1909 | Wind direction range value | Input / Output | 4 Bytes | R,W,C,T | 14.007 angle (degree) |
|------|----------------------------|----------------|---------|---------|-----------------------|



|                                                                                                  | 1 from: Absolute value                                                                                |                   |             |              |                             |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|-------------|--------------|-----------------------------|--|--|--|--|--|--|
| Reference point of setting and/or reading the Wind direction range ß "From" value 1 (degrees °). |                                                                                                       |                   |             |              |                             |  |  |  |  |  |  |
| 1910                                                                                             | Wind direction range value                                                                            | Input / Output    | 4 Bytes     | R,W,C,T      | 14.007 angle (degree)       |  |  |  |  |  |  |
|                                                                                                  | 1 up to: Absolute value                                                                               |                   |             |              |                             |  |  |  |  |  |  |
| Re                                                                                               | eference point of setting and/o                                                                       | or reading the Wi | nd directio | n range ß "l | Jp to" value 1 (degrees °). |  |  |  |  |  |  |
| 1911                                                                                             | Wind direction range value                                                                            | Input             |             | W,C          | 1.001 switch                |  |  |  |  |  |  |
|                                                                                                  | 1: Switching output block                                                                             |                   |             |              |                             |  |  |  |  |  |  |
| U:                                                                                               | Used to receive a binary state block = 1 or allow = 0 the switching of an output (Obj.No. 1904) based |                   |             |              |                             |  |  |  |  |  |  |
| on Wir                                                                                           | nd direction range ß.                                                                                 |                   |             |              |                             |  |  |  |  |  |  |

Table 5.21 Communication object of "Wind direction ranges"



# 5.22 Communication object of "Pressure measured value"

|            | Number | Name                                              | Object Function | Description | Group Address | Length   | C | R  | W | T | U | Data Type                | Priority |
|------------|--------|---------------------------------------------------|-----------------|-------------|---------------|----------|---|----|---|---|---|--------------------------|----------|
| <b>#</b>   | 481    | Air pressure sensor: Malfunction                  | Output          |             |               | 1 bit    | C | R  | - | Т | - | switch                   | Low      |
| <b>#</b> 2 | 482    | Air pressure sensor: Normal measurement [Pa]      | Output          |             |               | 4 bytes  | C | R  | - | Т | - | pressure (Pa)            | Low      |
| m-         | 483    | Air pressure sensor: Barometric measurement [Pa]  | Output          |             |               | 4 bytes  | C | R  | - | Τ | - | pressure (Pa)            | Low      |
| m#         | 484    | Air pressure sensor: Min./Max. measurement query  | Input           |             |               | 1 bit    | C | :7 | W | ā | - | trigger                  | Low      |
| <b>#</b>   | 485    | Air pressure sensor: Min. normal measurement [Pa] | Output          |             |               | 4 bytes  | C | R  | - | Т | - | pressure (Pa)            | Low      |
| <b>#</b> 2 | 486    | Air pressure sensor: Min. bar. measurement [Pa]   | Output          |             |               | 4 bytes  | C | R  | - | T | - | pressure (Pa)            | Low      |
| m-         | 487    | Air pressure sensor: Max. normal measurement [Pa] | Output          |             |               | 4 bytes  | C | R  | - | Т | - | pressure (Pa)            | Low      |
| m2         | 488    | Air pressure sensor: Max. bar. measurement [Pa]   | Output          |             |               | 4 bytes  | C | R  | - | Т | - | pressure (Pa)            | Low      |
| <b>#</b>   | 489    | Air pressure sensor: Min./Max. measurement reset  | Input           |             |               | 1 bit    | C | -  | W | - | - | trigger                  | Low      |
| m+         | 490    | Air pressure sensor: Pressure range text          | Output          |             |               | 14 bytes | C | R  | - | Т | - | Character String (ASCII) | Low      |

|                    | Fig.5.22 Commun                       | ication obje  | ct of "Pres | ssure measi  | ured value"                      |
|--------------------|---------------------------------------|---------------|-------------|--------------|----------------------------------|
| NO.                | Name                                  | Function      | Types       | Property     | DPT                              |
| 481                | Air pressure sensor:                  | Output        | 1 Bit       | C,R,T        | 1001 switch                      |
|                    | Malfunction                           |               |             |              |                                  |
| If                 | f enabled, it indicates if the Air pr | essure sens   | or is expe  | riencing a r | malfunction(1 = malfunction, 0 = |
| no ma              | alfunction).                          |               |             |              |                                  |
| 482                | Air pressure sensor: Normal           | Output        | 4 Bytes     | C,R,T        | 14.058 pressure (Pa)             |
|                    | measurement [Pa]                      |               |             |              |                                  |
| Т                  | he air pressure is the pressure me    | easured dire  | ctly by the | sensor (wit  | thout compensation).             |
| 483                | Air pressure sensor:                  | Output        | 4 Bytes     | C,R,T        | 14.058 pressure (Pa)             |
|                    | Barometric measurement [Pa]           |               |             |              |                                  |
| S                  | Sends the Barometric pressure cor     | npensated l   | oy altitude | on the bus.  |                                  |
| 484                | Air pressure sensor:                  | Input         | 1 Bit       | C,W          | 1.017 trigger                    |
|                    | Min./max. measurement query           |               |             |              |                                  |
| R                  | Request the maximum and minimu        | ım Air press  | sure value  | recorded. V  | Vriting a 1 to the communication |
| objec <sup>-</sup> | t triggers the Air pressure sensor    | to report its | minimum     | and maxim    | um measured values to the KNX    |
| bus.               |                                       |               |             |              |                                  |
| 485                | Air pressure sensor: Min.             | Output        | 4 Bytes     | C,R,T        | 14.058 pressure (Pa)             |
|                    | normal measurement [Pa]               |               |             |              |                                  |



| <del>1</del> 86 | Air pressure sensor: Min.          | Output       | 4 Bytes     | C,R,T         | 14.058 pressure (Pa)        |
|-----------------|------------------------------------|--------------|-------------|---------------|-----------------------------|
|                 | barometric measurement [Pa]        |              |             |               |                             |
| N               | Minimum Barometric Measured Va     | lue after Re | set the bus | s send it bac | k after requesting a query. |
| 487             | Air pressure sensor: Max.          | Output       | 4 Bytes     | C,R,T         | 14.058 pressure (Pa)        |
|                 | normal measurement [Pa]            |              |             |               |                             |
| N               | Maximum Normal Measured Valu       | e after Res  | et the bus  | send it back  | after requesting a query.   |
| 488             | Air pressure sensor: Max.          | Output       | 4 Bytes     | C,R,T         | 14.058 pressure (Pa)        |
|                 | barometric measurement [Pa]        |              |             |               |                             |
| N               | Maximum Barometric Value after R   | eset the bu  | s send it b | ack after rec | uesting a query.            |
| 489             | Air pressure sensor:Min./max.      | Input        | 1 Bit       | C,W           | 1.017 trigger               |
|                 | reading reset                      |              |             |               |                             |
| N               | Min./Max values reset after reques | ting them u  | sing the M  | easurement    | query (Obj.No. 484 ).       |
| 490             | Air pressure sensor: Pressure      | Output       | 14          | C,R,T         | 16.000 character string     |
|                 | range text                         |              | Bytes       |               | (ASCII)                     |

Table 5.22 Communication object of "Pressure measured value"



### 5.23 Communication object of "Pressure threshold value"

|            | Number | Name                                              | Object Function Des | escription | Group Address | Length  | C | R  | W 1 | U | Data Type     | Priority |
|------------|--------|---------------------------------------------------|---------------------|------------|---------------|---------|---|----|-----|---|---------------|----------|
| <b>*</b>   | 491    | Air pressure threshold value 1: Absolute value    | Input / Output      |            |               | 4 bytes | C | R  | W T | - | pressure (Pa) | Low      |
| <b>#</b> 2 | 492    | Air pressure threshold value 1: (1:+   0:-)       | Input               |            |               | 1 bit   | C | -7 | W - | - | step          | Low      |
| m.         | 493    | Air pressure threshold value 1: Delay from 0 to 1 | Input               |            |               | 2 bytes | C | -  | W - | - | time (s)      | Low      |
| 1          | 494    | Air pressure threshold value 1: Delay from 1 to 0 | Input               |            |               | 2 bytes | C | -  | W - | - | time (s)      | Low      |
| <b>#</b>   | 495    | Air pressure threshold value 1: Switching output  | Output              |            |               | 1 bit   | C | R  | - T | - | switch        | Low      |
| 117        | 496    | Air pressure TLV 1: Switching output block        | Input               |            |               | 1 bit   | C | -  | W - | - | switch        | Low      |

Fig.5.23 Communication object of "Pressure threshold value"

| NO.    | Name                             | Function           | Types        | Property           | DPT                      |
|--------|----------------------------------|--------------------|--------------|--------------------|--------------------------|
| 491    | Air pressure threshold value     | Input /Output      | 4 Bytes      | R,W,C,T            | 14.058 pressure (Pa)     |
|        | 1: Absolute value                |                    |              |                    | Pressure                 |
| F      | Reference point of setting and/o | or reading the Air | r pressure t | threshold value 1. |                          |
| 492    | Air pressure threshold value     | Input              | 1 Bit        | W,C                | 1.007 step               |
|        | 1: (1:+   0:-)                   |                    |              |                    |                          |
| ι      | Jsed to increment=1 or decrem    | ent=0 the Air pre  | ssure thres  | shold value 1.     |                          |
| 493    | Air pressure threshold value     | Input              | 2 Bytes      | W,C                | 7.005 time(s)            |
|        | 1: Delay from 0 to 1             |                    |              |                    |                          |
| I      | ndicating the time period in sec | onds that should   | d be exceed  | ded before Obj.No  | . 495 changes from 0 to  |
| 1, aft | er (Measured value is over Obj.  | No. 491 ).         |              |                    |                          |
| 494    | Air pressure threshold value     | Input              | 2 Bytes      | W,C                | 7.005 time(s)            |
|        | 1: Delay from 1 to 0             |                    |              |                    |                          |
| ı      | ndicating the time period in sec | onds that should   | d be exceed  | ded before Obj.No  | . 495 changes from 1 to  |
| 0 afte | er (Measured value is under Obj  | .No. 491 ).        |              |                    |                          |
| 495    | Air pressure threshold value     | Output             | 1 Bit        | R,C,T              | 1.001 switch             |
|        | 1: Switching output              |                    |              |                    |                          |
|        | Used to trigger actions if the n | neasured value     | is above o   | r under (consider  | ing the time delays) Air |

Used to trigger actions if the measured value is above or under (considering the time delays) Air Pressure threshold 1(The telegram value is defined by the parameter "Output is at(TV=threshold value) (SD=Switching distance)").



# **GV5** K-BUS KNX/EIB KNX GPS Weather Station Pro

| 496  | Air pressure threshold value       | Input            | 1 Bit     | w,c                 | 1.001 switch         |  |  |  |  |  |  |
|------|------------------------------------|------------------|-----------|---------------------|----------------------|--|--|--|--|--|--|
|      | 1: Switching output block          |                  |           |                     |                      |  |  |  |  |  |  |
| ı    | Jsed to receive a binary state     | to (block = 1 or | allow = 0 | ) "default values") | the switching output |  |  |  |  |  |  |
| base | based on Air Pressure threshold 1. |                  |           |                     |                      |  |  |  |  |  |  |

Table 5.23 Communication object of "Pressure threshold value"



### 5.24 Communication object of "Summer compensation"

|            | Number | Name                                      | Object Function | Description | Group Address | Length  | C | R | W | T | U | Data Type        | Priority |
|------------|--------|-------------------------------------------|-----------------|-------------|---------------|---------|---|---|---|---|---|------------------|----------|
| <b>#</b>   | 595    | Summer compensation: Outdoor temperature  | Input           |             |               | 2 bytes | C | - | W | T |   | temperature (°C) | Low      |
| ==         | 596    | Summer compensation: Target value         | Output          |             |               | 2 bytes | C | R | 2 | T | 2 | temperature (°C) | Low      |
| <b>■</b> ≯ | 597    | Summer compensation: Block (1 = Blocking) | Input           |             |               | 1 bit   | - | _ | W | _ | _ | switch           | Low      |

Fig. 5.24 Communication object of "Summer compensation"

| NO.                                                                                                   | Name                              | Function    | Types       | Property    | DPT                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|-------------|-------------|-------------------------------|--|--|--|--|--|
| 595                                                                                                   | Summer compensation:              | Input       | 2 Bytes     | C,W,T       | 9.001 temperature (°C)        |  |  |  |  |  |
|                                                                                                       | Outdoor temperature               |             |             |             |                               |  |  |  |  |  |
| 5                                                                                                     | Send the Outdoor temp to this Gro | oup adress. |             |             |                               |  |  |  |  |  |
| 596                                                                                                   | Summer compensation:              | Output      | 2 Bytes     | R-CT        | 9.001 temperature (°C)        |  |  |  |  |  |
|                                                                                                       | Setpoint                          |             |             |             |                               |  |  |  |  |  |
| 7                                                                                                     | Target indoor temperature which   | is automati | cally adjus | ted based o | on outdoor temperature Value. |  |  |  |  |  |
| 597                                                                                                   | Summer compensation:              | Input       | 1 Bit       | wc          | 1.001 switch                  |  |  |  |  |  |
|                                                                                                       | Block (1 = Block)                 |             |             |             |                               |  |  |  |  |  |
| Used to receive a binary state to (block = 1 or allow = 0 "default values") the setpoint Obj.No. 597. |                                   |             |             |             |                               |  |  |  |  |  |

Table 5.24 Communication object of "Summer compensation"



# 5.25 Communication object of "Facades"

|               | Number | Name                                               | Object Function Description Group Add | ress Length | C | R  | W | T | U  | Data Type                | Priority |
|---------------|--------|----------------------------------------------------|---------------------------------------|-------------|---|----|---|---|----|--------------------------|----------|
| m#            | 609    | Façade Wind measurement 1 in m/s                   | Input                                 | 2 bytes     | C | -  | W | Τ | -  | speed (m/s)              | Low      |
| =             | 610    | Façade Wind measurement 2 in m/s                   | Input                                 | 2 bytes     | C | 12 | W | Т | 20 | speed (m/s)              | Low      |
| 1             | 611    | Façade Wind measurement 3 in m/s                   | Input                                 | 2 bytes     | C | -  | W | Τ | -  | speed (m/s)              | Low      |
| #             | 612    | Façade Wind measurement 4 in m/s                   | Input                                 | 2 bytes     | C | Ç. | W | Т | 20 | speed (m/s)              | Low      |
| +             | 613    | Façade Wind measurement 5 in m/s                   | Input                                 | 2 bytes     | C | -  | W | T | -  | speed (m/s)              | Low      |
| 2             | 614    | Façade Wind measurement 6 in m/s                   | Input                                 | 2 bytes     | C | ្ន | W | Т | 20 | speed (m/s)              | Low      |
| 2             | 615    | Façade Wind measurement 7 in m/s                   | Input                                 | 2 bytes     | C | -  | W | T | -  | speed (m/s)              | Low      |
| 4             | 616    | Façade Wind measurement 8 in m/s                   | Input                                 | 2 bytes     | C | ្ន | W | Т | 20 | speed (m/s)              | Low      |
| 2             | 617    | Façade Wind measured value 9 in m/s                | Input                                 | 2 bytes     | C | -  | W | T | -  | speed (m/s)              | Low      |
| 4             | 618    | Façade Wind measured value 10 in m/s               | Input                                 | 2 bytes     | C | 1  | W | Т | 20 | speed (m/s)              | Low      |
| +             | 619    | Façade Wind measured value 11 in m/s               | Input                                 | 2 bytes     | C | -  | W | T | -  | speed (m/s)              | Low      |
| 7             | 620    | Façade Wind measured value 12 in m/s               | Input                                 | 2 bytes     | C | 12 | W | Т | 2) | speed (m/s)              | Low      |
| +             | 621    | Façade Wind automation blocking duration in min.   | Input/Output                          | 2 bytes     | C | R  | W | Т | -  | time (min)               | Low      |
| 4             | 622    | Façade Wind autom. block. dur. in min. (1:+   0:-) | Input                                 | 1 bit       | C | ્ર | W | - | 20 | step                     | Low      |
| +             | 623    | Façade Rain automation Delay in minutes            | Input/Output                          | 2 bytes     | C | R  | W | Т | -  | time (min)               | Low      |
| 2             | 624    | Façade Rain automation Delay in mins (1:+   0:-)   | Input                                 | 1 bit       | C | 12 | W | - | 20 | step                     | Low      |
| 2             | 625    | Façade Twilight Threshold value in lux             | Input/Output                          | 2 bytes     | C | R  | W | T | -  | lux (Lux)                | Low      |
| 2             | 626    | Façade Twilight threshold value in Lux (1:+   0:-) | Input                                 | 1 bit       | C | 1  | W | - | 2  | step                     | Low      |
| 2             | 627    | Façade Outdoor temperature (°C)                    | Input                                 | 2 bytes     | C | -  | W | Τ | -  | temperature (°C)         | Low      |
| 2             | 628    | Façade Heat protection threshold value in °C       | Input/Output                          | 2 bytes     | C | R  | W | Т | 2) | temperature (°C)         | Low      |
| #             | 629    | Façade Frost alarm TLV in °C (1:+   0:-)           | Input                                 | 1 bit       | C | -  | W | - | -  | step                     | Low      |
| 2             | 630    | Façade Frost alarm start temperature in °C         | Input/Output                          | 2 bytes     | C | R  | W | Т | 2) | temperature (°C)         | Low      |
| #             | 631    | Façade Frost alarm start temp. in °C (1:+   0:-)   | Input                                 | 1 bit       | C | -  | W | - | -  | step                     | Low      |
| 2             | 632    | Façade Frost alarm start delay in hours            | Input/Output                          | 2 bytes     | C | R  | W | Т | 2) | time (h)                 | Low      |
| #             | 633    | Façade Frost alarm start temp. in hrs (1:+   0:-)  | Input                                 | 1 bit       | C | -  | W | - | -  | step                     | Low      |
| 2             | 634    | Façade Frost alarm stop temperature in °C          | Input/Output                          | 2 bytes     | C | R  | W | Т | 2) | temperature (°C)         | Low      |
| 2             | 635    | Façade Frost alarm stop temp. in °C (1:+   0:-)    | Input                                 | 1 bit       | C | -  | W | - | -  | step                     | Low      |
| 2             | 636    | Façade Frost alarm stop delay in hours             | Input/Output                          | 2 bytes     | C | R  | W | Т | 2) | time (h)                 | Low      |
| 2             | 637    | Façade Frost alarm stop delay in hours (1:+   0:-) | Input                                 | 1 bit       | C | -  | W |   | -  | step                     | Low      |
| 2             | 638    | Façade Pyranometer measured value 1 in W/m²        | Input                                 | 2 bytes     | C | -  | W | Т | 2  | power density (W/m²)     | Low      |
| 2             | 639    | Façade Pyranometer measured value 1 in W/m²        | Input                                 | 4 bytes     | C |    | W | Т | -  | amplitude                | Low      |
| 2             | 640    | Façade Pyranometer measured value 2 in W/m²        | Input                                 | 2 bytes     | C | 1  | W | Т | 20 | power density (W/m²)     | Low      |
| 2             | 641    | Façade Pyranometer measured value 2 in W/m²        | Input                                 | 4 bytes     | C |    | W | Т | -  | amplitude                | Low      |
| 2             | 642    | Façade Pyranometer measured value 3 in W/m²        | Input                                 | 2 bytes     | C | 1  | W | Т | 2) | power density (W/m²)     | Low      |
| 2             | 643    | Façade Pyranometer measured value 3 in W/m²        | Input                                 | 4 bytes     | C | -  | W | Т |    | amplitude                | Low      |
| 2             | 644    | Façade Pyranometer measured value 4 in W/m²        | Input                                 | 2 bytes     | C | 1  | W | Т | 2  | power density (W/m²)     | Low      |
| 2             | 645    | Façade Pyranometer measured value 4 in W/m²        | Input                                 | 4 bytes     | C |    |   | Т | -  | amplitude                | Low      |
| 2             | 648    | Façade X channel status output (1: activate)       | Input                                 | 1 bit       | C | R  | W | _ | 2  | switch                   | Low      |
| 2             | 649    | Facade X channel name                              | Output                                | 14 bytes    |   | R  |   | Т | 20 | Character String (ASCII) | Low      |
|               |        |                                                    |                                       | 0071/0071/2 |   |    |   |   |    |                          |          |
| # <del></del> | 650    | Façade X channel (1:+   0:-)                       | Input                                 | 1 bit       | C | -  | W | - | 5  | switch                   | Low      |
| ==            | 651    | Façade X channel state text                        | Output                                | 14 bytes    |   | R  | - |   | -  | Character String (ASCII) | Low      |
| 4             | 652    | Façade X channel status bit text                   | Output                                | 14 bytes    |   | R  | 0 | Т | 8  | Character String (ASCII) | Low      |
| <b>#</b>      | 653    | Façade X channel status bit state                  | Output                                | 1 bit       | C | R  | - | T | -  | switch                   | Low      |
| 7             | 654    | Façade X channel delay                             | Output                                | 2 bytes     | C | R  | 0 | T | 5  | time (s)                 | Low      |
| <b>#</b>      | 655    | Façade X channel status bit selection (1:+   0:-)  | Input                                 | 1 bit       | C | -  | W | - | -  | step                     | Low      |



|                      |            |                                                                                              | KINA/LID KIN                          | A GES Weather Station Fi                  |
|----------------------|------------|----------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|
| m2                   | 656        | Façade Wind simulation in m/s                                                                | Input                                 | 2 bytes C R W speed (m/s) Low             |
| <b>#</b>             | 657        | Façade Wind ext. blocking simulation (1: active)                                             | Input                                 | 1 bit CRW switch Low                      |
| 2                    | 658        | Façade Wind alarm simulation (1: active)                                                     | Input                                 | 1 bit CRW switch Low                      |
| 1                    | 659        | Façade Rain simulation (1: active)                                                           | Input                                 | 1 bit CRW switch Low                      |
| 1                    | 660        | Façade Outdoor temperature in °C simulation                                                  | Input                                 | 2 bytes C R W temperature (°C) Low        |
| 2                    | 661        | Façade Indoor temperature in °C simulation                                                   | Input                                 | 2 bytes C R W temperature (°C) Low        |
| 1                    | 662        | Façade Brightness in Lux simulation                                                          | Input                                 | 2 bytes C R W lux (Lux) Low               |
| 2                    | 663        | Façade Sun intensity simulation in watts/m²                                                  | Input                                 | 2 bytes C R W power density (W/m²) Low    |
| 12                   | 664        | Façade Date simulation                                                                       | Input                                 | 3 bytes C R W date Low                    |
| 2                    | 665        | Façade Time simulation                                                                       | Input                                 | 3 bytes C R W time of day Low             |
| <b>#</b>             | 666        | Façade Direction of the sun simulation in °, date & ti.                                      | Output                                | 4 bytes C R - T - angle (degree) Low      |
| 2                    | 667        | Façade Height of the sun simulation in °, date & time                                        | Output                                | 4 bytes C R - T - angle (degree) Low      |
| 2                    | 668        | Façade Direction of the sun simulation in °                                                  | Input                                 | 4 bytes C R W angle (degree) Low          |
| 2                    | 669        | Façade Height of the sun simulation in °                                                     | Input                                 | 4 bytes C R W angle (degree) Low          |
| m#                   | 670        | Façade Reset simulation (1: reset)                                                           | Input                                 | 1 bit C - W switch Low                    |
| <b>#</b> 2           | 671        | Façade Sun angle mode simulation (1: On   0: Off)                                            | Input                                 | 1 bit C R W switch Low                    |
|                      | Ko Ja      | 18-85                                                                                        | 01: 15 1: 0 0 1:                      |                                           |
| L.                   | Number     |                                                                                              | Object Function Description Group Add |                                           |
| <b>#</b>             | 672        | Façade 1 simulation (1: On   0: Off)                                                         | Input                                 | 1 bit C R W switch Low                    |
|                      | 673        | Façade 1 block (1 = Block   0 = Release)                                                     | Input                                 | 1 bit C R W switch Low                    |
| <b>#</b>             | 674        | Façade 1 safety (1: On   0: Off)                                                             | Output                                | 1 bit C R - T - switch Low                |
|                      |            |                                                                                              |                                       |                                           |
| <b>E</b> 7           | 675        | Façade 1 wind extension block (1: On   0: Off)                                               | Input                                 | 1 bit C - W switch Lov                    |
|                      |            |                                                                                              |                                       |                                           |
| *                    | 676        | Façade 1 wind extension block TLV in m/s                                                     | Input                                 | 2 bytes C R W T - speed (m/s) Low         |
|                      |            |                                                                                              | •                                     |                                           |
| →I                   | 677        | 5 14 1 1 1 1 1 TIVE 10 1                                                                     | 741173                                | 315 6 W                                   |
| ###                  | 677        | Façade 1 wind extension block TLV (1:+   0:-)                                                | Input                                 | 1 bit C - W step Low                      |
| <b>■</b>             | 678        | Façade 1 wind ext. block status (1: On   0: Off)                                             | Output                                | 1 bit C R - T - switch Low                |
| m <del>‡</del>       | 679        | Façade 1 wind alarm (1: On   0: Off)                                                         | Input                                 | 1 bit C - W switch L                      |
| <b>■</b> →           | 680        | Façade 1 wind alarm threshold value in m/s                                                   | Input                                 | 2 bytes C R W T - speed (m/s) Lov         |
| m+                   | 681        | - 35                                                                                         |                                       |                                           |
| # <del></del>        |            | Façade 1 wind alarm threshold value (1:+   0:-)                                              | Input                                 |                                           |
| - 1                  | 682        | Façade 1 wind alarm status (1: On   0: Off)                                                  | Output                                |                                           |
| <b>#</b> 2           | 683        | Façade 1 frost alarm status (1: On   0: Off)                                                 | Output                                | 1 bit C R W T - switch Lov                |
| <b> </b>             | 684        | Façade 1 rain automation (1: activated)                                                      | Input                                 | 1 bit C R W switch Low                    |
| 1                    | 685        | Façade 1 rain alarm status (1: On   0: Off)                                                  | Output                                | 1 bit C R - T - switch Low                |
| <b>#</b>             | 686        | Façade 1 timed opening (1: act.   0: deact.)                                                 | Input                                 | 1 bit C R W switch Low                    |
| 2                    | 687        | Façade 1 timed opening status (1: On   0: Off)                                               | Output                                | 1 bit C R - T - switch Low                |
| <b>#</b>             | 688        | Façade 1 outdoor temp. Blocking (1: activated)                                               | Input                                 | 1 bit C R W switch Low                    |
| 2                    | 689        | Façade 1 outdoor temperature Block in °C                                                     | Input/Output                          | 2 bytes C R W T - temperature (°C) Low    |
| 2                    | 690        | Façade 1 outdoor temp. Block in °C (1:+   0:-)                                               | Input                                 | 1 bit C - W step Low                      |
| 7                    | 691        | Façade 1 ext. temp. Block status (1: On   0: Off)                                            | Output                                | 1 bit C R - T - switch Low                |
| 7                    | 692        | Façade 1 timed closure (1: activate)                                                         | Input                                 | 1 bit C R W switch Low                    |
| # <b></b>            | 693        | Façade 1 timed closure status (1: On   0: Off)                                               | Output                                | 1 bit C R - T - switch Low                |
| +<br> <br> <br> <br> | 694        | Façade 1 night closure (1: activated)                                                        | 100000 P. 10000                       |                                           |
| + <br> <br> -        |            | Façade 1 night closure (1: activated) Façade 1 night closure status (1: On   0: Off)         | Input                                 |                                           |
| -//                  | 695        |                                                                                              | Output                                |                                           |
| <b>₽</b>             | 696        | Façade 1 heating protection (1: activated)                                                   | Input                                 | 1 bit C R W switch Low                    |
| 7                    | 697        | Façade 1 heating prot. status (1: On   0: Off)                                               | Output                                | 1 bit C R - T - switch Low                |
| ==                   | 698        | Façade 1 pyranometer (1: activated)                                                          | Input                                 | 1 bit C R W switch Lo                     |
| <b>#</b>             | 699        | Façade 1 pyranometer in W/m²                                                                 | Input/Output                          | 2 bytes C R W T - power density (W/m²) Lo |
| ==                   | 700        | Façade 1 pyranometer in W/m² (1:+   0:-)                                                     | Input                                 | 1 bit C - W step Lo                       |
| <b>=</b>             | 701        | Façade 1 pyranometer status (1: On   0: Off)                                                 | Output                                | 1 bit C R - T - switch Lo                 |
| -→I                  | 702        | Frank Lindon tomorrow / 85                                                                   | T                                     | Obstacle Communication (CC)               |
| <b>→</b>             | 702        | Façade 1 indoor temperature in °C                                                            | Input                                 | 2 bytes C - W T - temperature (°C) Lov    |
| 1000                 | 703        | Façade 1 indoor temperature block (1: activated)                                             | Input                                 | 1 bit C R W switch Lov                    |
| 7                    | 704        | Façade 1 indoor temperature Block in °C                                                      | Input/Output                          | 2 bytes C R W T - temperature (°C) Lov    |
| 1931                 | 705        | Façade 1 indoor temp. Block in °C (1:+   0:-)                                                | Input                                 | 1 bit C - W step Lov                      |
| 7                    | 706        | Façade 1 indoor temp. blk status (1: On   0: Off)                                            | Output                                | 1 bit C R - T - switch Lov                |
|                      |            |                                                                                              |                                       |                                           |
| الحي                 |            | 그런 돈을 받았다면 그는 그런 그는 그는 그 그 그 그 그 그 그 그 그 그 그 그 그 그                                           |                                       |                                           |
| -                    | 707<br>708 | Façade 1 indoor temperature via bit object (1: block) Façade 1 sun automation (1: activated) | Input<br>Input                        | 1 bit                                     |



| <b>■</b> +     | 709 | Façade 1 sun automation Direction of the sun from (   | j Input      | 4 byte:  | S | C   | R | W | T  | - angle (degree)        | Low   |
|----------------|-----|-------------------------------------------------------|--------------|----------|---|-----|---|---|----|-------------------------|-------|
| <b>#</b>       | 710 | Façade 1 sun automation Direction of the sun from (   | 1Input       | 1 bit    |   | C   | _ | W | -  | - step                  | Low   |
| m2             | 711 | Façade 1 sun automation Direction of the sun up to    | ( Input      | 4 byte:  | s | C   | R | W | Т  | - angle (degree)        | Low   |
| <b>■</b> →     | 712 | Façade 1 sun automation Direction of the sun up to    | ( Input      | 1 bit    |   | C   | _ | W | -  | - step                  | Low   |
| m2             | 713 | Façade 1 sun automation Height of the sun from (in    | °) Input     | 4 byte:  | 5 | C   | R | W | Т  | - angle (degree)        | Low   |
| <b>*</b>       | 714 | Façade 1 sun automation Height of the sun from (1:-   | Input        | 1 bit    |   | C   | _ | W | -  | - step                  | Low   |
| m2             | 715 | Façade 1 sun automation Height of the sun up to (in   | ı°) İnput    | 4 byte:  | 5 | C   | R | W | Т  | - angle (degree)        | Low   |
| <b>*</b>       | 716 | Façade 1 sun autom. Height of the sun up to (1:+   0  | :-) Input    | 1 bit    |   | C   | _ | W | -  | - step                  | Low   |
| <b>#</b> 2     | 717 | Façade 1 sun autom. DirHeight status (1: On   0: Off) | Output       | 1 bit    |   | C   | R | 5 | Т  | - switch                | Low   |
| m <del>2</del> | 718 | Façade 1 sun autom. Brightness measurement in Lux     | Input        | 2 bytes  | C | -   | W | Т | ٠. | lux (Lux)               | Low   |
| ==             | 719 | Façade 1 sun automation Brightness TLV in Lux         | Input        | 2 bytes  | C | R   | W | Т | -  | lux (Lux)               | Low   |
| m2             | 720 | Façade 1 sun automation Brightness TLV (1:+   0:-)    | Input        | 1 bit    | C | -   | W | - | -  | step                    | Low   |
| m2             | 721 | Façade 1 sun autom. BRT Short status (1: On)          | Output       | 1 bit    | C | R   | - | T | _  | switch                  | Low   |
| m2             | 722 | Façade 1 sun autom. Brightness Long status (1: On)    | Output       | 1 bit    | C | R   | - | Т | -  | switch                  | Low   |
| <b>#</b>       | 723 | Façade 1 extension delay in min.                      | Input/Output | 2 bytes  | C | R   | W | Т | -  | time (min)              | Low   |
| m2             | 724 | Façade 1 extension delay in min. (1:+   0:-)          | Input        | 1 bit    | C | 7   | W | - | -  | step                    | Low   |
| ==             | 725 | Façade 1 short delay in seconds                       | Input/Output | 2 bytes  | C | R   | W | T | -  | time (s)                | Low   |
| m2             | 726 | Façade 1 short delay in seconds (1:+   0:-)           | Input        | 1 bit    | C | 75  | W | - | -  | step                    | Low   |
| <b>#</b>       | 727 | Façade 1 retraction delay in min.                     | Input/Output | 2 bytes  | C | R   | W | T | -  | time (min)              | Low   |
| m2             | 728 | Façade 1 retraction delay in min. (1:+   0:-)         | Input        | 1 bit    | C | 75  | W | - | -  | step                    | Low   |
| ==             | 729 | Façade 1 movement position                            | Output       | 1 byte   | C | R   | - | T | -  | percentage (0100%)      | Low   |
| m2             | 730 | Façade 1 slat position                                | Output       | 1 byte   | C | R   | - | T | -  | percentage (0100%)      | Low   |
| <b>#</b>       | 731 | Façade 1 status output channel (1: activate)          | Input        | 1 bit    | C | R   | W | - | -  | switch                  | Low   |
| m2             | 732 | Façade 1 state text                                   | Output       | 14 bytes | C | R   | - | T | -  | Character String (ASCII | ) Low |
| ==             | 733 | Façade 1 channel status bit text                      | Output       | 14 bytes | C | R   | - | T | -  | Character String (ASCII | ) Low |
| m2             | 734 | Façade 1 channel status bit state                     | Output       | 1 bit    | C | R   | 7 | T | -  | switch                  | Low   |
| <b>■</b>       | 735 | Façade 1 channel delay                                | Output       | 2 bytes  | C | R   | - | T | -  | time (s)                | Low   |
| m <del>2</del> | 736 | Façade 1 channel status bit selection (1:+   0:-)     | Input        | 1 bit    | C | · 5 | W | 1 | -  | step                    | Low   |

Fig. 5.25 Communication object of "Facades"

| NO    | Nome                                   | Function     | Tunco       | Droporty | DPT               |
|-------|----------------------------------------|--------------|-------------|----------|-------------------|
| NO.   | Name                                   | FullCtion    | Types       | Property | DPT               |
| 609// | Facade Wind measurement 1//12          | Input        | 2 Bytes     | C,W,T    | 9.005 speed (m/s) |
| 620   | in m/s                                 |              |             |          |                   |
| Exte  | rnal wind measurement input 1//12      | for façade   | automatior  | 1.       |                   |
| 621   | Facade Wind automation blocking        | Input/       | 2 Bytes     | R,W,C,T  | 7.006 time (min)  |
|       | duration in min.                       | Output       |             |          |                   |
| Set   | a time for blocking the automation aft | er wind alar | m is trigge | red.     |                   |
| 622   | Facade Wind automation blocking        | Input        | 1 Bit       | W,C      | 1.007 step        |
|       | duration in min. (1:+   0:-)           |              |             |          |                   |
| Incr  | ements or decrements the wind block    | duration va  | lue in minu | tes.     |                   |
| 623   | Facade Rain auto. Delay in             | Input/Ou     | 2 Bytes     | R,W,C,T  | 7.006 time (min)  |
|       | minutes                                | tput         |             |          |                   |



| wait      | this time after rain alarm is trigger     | ed before a  | ctivating t  | he façade a   | automation.(To ensure a |
|-----------|-------------------------------------------|--------------|--------------|---------------|-------------------------|
| rainy wea | ather is confirmed).                      |              |              |               |                         |
| 624       | Facade Rain auto. Delay in                | Input        | 1 Bit        | W,C           | 1.007 step              |
|           | minutes (1:+   0:-)                       |              |              |               |                         |
| Incr      | ements or decrements the rain detecti     | on delay du  | ration valu  | e in minutes  | S.                      |
| 625       | Facade Twilight threshold value in        | Input/Ou     | 2 Bytes      | R,W,C, T      | 9.004 lux (Lux)         |
|           | kLux                                      | tput         |              |               |                         |
| Set       | value of twilight brightness, if (Brightn | ess < Thres  | hold) = nig  | ht / (Brightr | ness > Threshold) = day |
| 626       | Facade Twilight threshold value in        | Input        | 1 Bit        | W,C           | 1.007 step              |
|           | Lux (1:+   0:-)                           |              |              |               |                         |
| Incr      | ements or decrements the Twilight val     | lue in Lux.  | I            | I             |                         |
| 627       | Facade Outside temperature (°C)           | Input        | 2 Bytes      | C,W,T         | 9.001 temperature (°C)  |
| Inpu      | ıt the outdoor sensor for the façade au   | ıtomation.   |              |               |                         |
| 628       | Facade Heat protection threshold          | Input/Ou     | 2 Bytes      | R,W,C, T      | 9.001 temperature (°C)  |
|           | value in °C                               | tput         |              |               |                         |
|           | nperature heat protection value set       | to which     | when exc     | ceeded by     | actual temperature the  |
| 629       | Facade Frost alarm threshold              | Input        | 1 Bit        | W,C           | 1.007 step              |
|           | value in °C (1:+   0:-)                   |              |              |               |                         |
| Incr      | ements or decrements the Heat protec      | ction thresh | old value ir | າ °C.         |                         |
| 630       | Facade Frost alarm start                  | Input/Ou     | 2 Bytes      | R,W,C, T      | 9.001 temperature (°C)  |
|           | temperature in °C                         | tput         |              |               |                         |
| Fros      | st can be detected below this start TVL   | _ (Temperat  | ure Value l  | imit).        |                         |
| 631       | Facade Frost alarm start                  | Input        | 1 Bit        | W,C           | 1.007 step              |



|           | 1, 505                                                                            |               |            |              | tilei otation i io        |
|-----------|-----------------------------------------------------------------------------------|---------------|------------|--------------|---------------------------|
|           | temperature in °C (1:+   0:-)                                                     |               |            |              |                           |
| Incre     | ements or decrements the Frost start                                              | temperature   | e in °C.   |              |                           |
| 632       | Facade Frost alarm start delay in                                                 | Input/Ou      | 2 Bytes    | R,W,C, T     | 7.007 time (h)            |
|           | hours                                                                             | tput          |            |              |                           |
|           | y time before the frost alarm is trigge<br>ount not only a temperature drop but a |               |            | ost conditio | n is confirmed, taking    |
| 633       | Facade Frost alarm start                                                          | Input         | 1 Bit      | W,C          | 1.007 step                |
|           | temperature in hours (1:+   0:-)                                                  |               |            |              |                           |
| Incre     | ements or decrements the Frost alarm                                              | start delay   | time in ho | urs.         |                           |
| 634       | Facade Frost alarm stop                                                           | Input/Ou      | 2 Bytes    | R,W,C, T     | 9.001 temperature (°C     |
|           | temperature in °C                                                                 | tput          |            |              |                           |
| Fros      | t is not detected anymore above this                                              | stop temper   | atue.      | l            |                           |
| 635       | Facade Frost alarm stop                                                           | Input         | 1 Bit      | w,c          | 1.007 step                |
|           | temperature in °C (1:+   0:-)                                                     |               |            |              |                           |
| Incre     | ements or decrements the Frost stop                                               | temperature   | e in °C.   |              |                           |
| 636       | Facade Frost alarm stop delay in                                                  | Input/        | 2 Bytes    | R,W,C, T     | 7.007 time (h)            |
|           | hours                                                                             | Output        |            |              |                           |
| Dela      | y time before the frost alarm is d                                                | eactivated    | ensures t  | hat the sys  | stem confirms the fros    |
| conditior | has truly ended, accounting for any                                               | potential te  | mperature  | fluctuations | s or precipitation change |
| rather th | an stopping the alarm immediately aft                                             | er a slight t | emperature | e rise.      |                           |
| 637       | Facade Frost alarm stop delay in                                                  | Input         | 1 Bit      | W,C          | 1.007 step                |
|           | hours (1:+   0:-)                                                                 |               |            |              |                           |
| Incre     | ements or decrements the Frost alarm                                              | stop delay    | time in ho | urs.         |                           |
| 638//     | Facade Pyranometer measured                                                       | Input         | 2 Bytes    | C,W,T        | 9.022 power density       |
| 645       | value 1//4 in W/m²                                                                |               | 4 Bytes    |              | (W/m2)                    |
|           |                                                                                   |               |            |              |                           |



| Exte                                                                                                                                                                                                                                                       | ernal Pyranometer measurement input       | 1//4 for f      | açade auto  | mation.     |                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|-------------|-------------|--------------------------|--|--|
| 648                                                                                                                                                                                                                                                        | Facade X channel status output (1:        | Input           | 1 Bit       | R,W,C       | 1.001 switch             |  |  |
|                                                                                                                                                                                                                                                            | activate)                                 |                 |             |             |                          |  |  |
| Out                                                                                                                                                                                                                                                        | put information for all façades can be    | activated w     | hen set to  | 1.          |                          |  |  |
| 649                                                                                                                                                                                                                                                        | Facade X channel name                     | Output          | 14          | R,C,T       | 16.000 Character         |  |  |
|                                                                                                                                                                                                                                                            |                                           |                 | Bytes       |             | String (ASCII)           |  |  |
| Out                                                                                                                                                                                                                                                        | put of the façade name (when changin      | g façades).     | Name of t   | he paramet  | er can be adapted.       |  |  |
| 650                                                                                                                                                                                                                                                        | Facade X channel (1:+   0:-)              | Input           | 1 Bit       | w,c         | 1.001 switch             |  |  |
| Change to the next/previous façade between façades 1 to 12. 1 = next, 0 = previous. This selection influences the façade displayed in associated objects. E. g. the name of the selected façade is output in object 649 and the status text in object 651. |                                           |                 |             |             |                          |  |  |
| 651                                                                                                                                                                                                                                                        | Facade X channel state text               | Output          | 14          | R,C,T       | 16.000 Character         |  |  |
|                                                                                                                                                                                                                                                            |                                           |                 | Bytes       |             | String (ASCII)           |  |  |
| Tex                                                                                                                                                                                                                                                        | t of the condition of the selected façac  | le. Saftey, V   | Vind extent | ion block,  | ).                       |  |  |
| 652                                                                                                                                                                                                                                                        | Facade X channel status bit text          | Output          | 14          | R,C,T       | 16.000 Character         |  |  |
|                                                                                                                                                                                                                                                            |                                           |                 | Bytes       |             | String (ASCII)           |  |  |
| Tex                                                                                                                                                                                                                                                        | t output about the reason behind the c    | urrent cond     | ition.(Wind | alarm, Rain | ı alarm,).               |  |  |
| 653                                                                                                                                                                                                                                                        | Facade X channel status bit state         | Output          | 1 Bit       | R,C,T       | 1.001 switch             |  |  |
| Status o                                                                                                                                                                                                                                                   | f the Status bit state (1 = True or not = | 0)              |             |             |                          |  |  |
| 654                                                                                                                                                                                                                                                        | Facade X channel delay                    | Output          | 2 Bytes     | R,C,T       | 7.005 time(s)            |  |  |
| Disp                                                                                                                                                                                                                                                       | laying the delay time for the selected    | d status-bit.   | Some aut    | omation fur | nctions have delay times |  |  |
| that mus                                                                                                                                                                                                                                                   | st first be run through before the status | s-bit is (re-)s | set.        |             |                          |  |  |
| 655                                                                                                                                                                                                                                                        | Facade X channel status bit               | Input           | 1 Bit       | W,C         | 1.007 step               |  |  |

KNX/EIB KNX GPS Weather Station Pro

## selection (1:+ | 0:-)

Selects the states of the automatic functions (channel status bit information) for the selected façade, that are then output in objects 652 and 653. 1 = next status info, 0 = previous status info. The text for the selected information is output in object 652 and the condition (true or false) is output in object 653.

| 656                                                                                          | Facade Wind simulation in m/s            | Input       | 2 Bytes       | R,W,C      | 9.005 speed (m/s)       |  |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------|-------------|---------------|------------|-------------------------|--|--|--|
| Simulation value of the Wind speed (m/s), used for façade different weather condtions tests. |                                          |             |               |            |                         |  |  |  |
| 657                                                                                          | Facade Wind extension blocking           | Input       | 1 Bit         | R,W,C      | 1.001 switch            |  |  |  |
|                                                                                              | simulation (1: active)                   |             |               |            |                         |  |  |  |
| If the                                                                                       | e wind extension block is active, the fa | içade could | dn't extend a | anymore.(R | emain in its position). |  |  |  |
| 658                                                                                          | Facade Wind alarm simulation             | Input       | 1 Bit         | R,W,C      | 1.001 switch            |  |  |  |
|                                                                                              | (1: active)                              |             |               |            |                         |  |  |  |

Simulation value of the Wind alarm. Ex: When = 1, move the face to the determined safe position.(if wind fuction is activated).

659 Facade Rain simulation (1: active) Input 1 Bit R,W,C 1.001 switch

Simulation value of the Rain alarm. Ex: When = 1, move the face to the determined safe position.(if rain fuction is activated).

| 660 | Facade External temperature in °C | Input | 2 Bytes | R,W,C | 9.001 temperature (°C) |
|-----|-----------------------------------|-------|---------|-------|------------------------|
|     | simulation                        |       |         |       |                        |

Simulation value of the External Temperature in (°C) used for façade different weather condtions tests.

| 661 | Facade Internal temperature in °C | Input | 2 Bytes | R,W,C | 9.001 temperature (°C) |
|-----|-----------------------------------|-------|---------|-------|------------------------|
|     | simulation                        |       |         |       |                        |

Simulation value of the Internal Temperature in (°C) used for façade different weather condtions tests.



| _        |                                          |               |              |             |                           |
|----------|------------------------------------------|---------------|--------------|-------------|---------------------------|
| 662      | Facade Brightness in Lux                 | Input         | 2 Bytes      | R,W,C       | 9.004 lux (Lux)           |
|          | simulation                               |               |              |             |                           |
| Sim      | ulation value of the Brightness (Lux), u | ısed for faç  | ade differe  | nt weather  | condtions tests.          |
| 663      | Facade Sun intensity simulation in       | Input         | 2 Bytes      | R,W,C       | 9.022 power density       |
|          | watts/m²                                 |               |              |             | (W/m2)                    |
| Sim      | ulation value of the Brightness (watts   | /m2)"intens   | ity of radia | nt energy", | The Output is 1. used for |
| façade d | lifferent weather condtions tests.       |               |              |             |                           |
| 664      | Facade Date simulation                   | Input         | 3 Bytes      | R,W,C       | 11.001 date               |
| Date     | e Value used for simulation. (Will affec | t the Sun Ic  | cation/dire  | ection/).   |                           |
| 665      | Facade Time simulation                   | Input         | 3 Bytes      | R,W,C       | 10.001 time of day        |
|          |                                          |               |              |             | Day                       |
| Tim      | e Value used for simulation. (Will affec | ct the Sun lo | ocation/dire | ection/).   |                           |
| 666      | Facade Sun direction simulation          | Output        | 4 Bytes      | R,C,T       | 14.007 angle (degree)     |
|          | in °, with date & time                   |               |              |             |                           |
| Sun      | direction based on simulation Date ar    | nd Time.      |              | I           |                           |
| 667      | Facade Sun height simulation in °,       | Output        | 4 Bytes      | R,C,T       | 14.007 angle (degree)     |
|          | with date & time                         |               |              |             |                           |
| Sun      | Hight based on simulation Date and T     | ime.          |              | I           |                           |
| 668      | Facade Sun direction simulation          | Input         | 4 Bytes      | R,W,C       | 14.007 angle (degree)     |
|          | in °                                     |               |              |             |                           |
| Sun      | direction in ° used for façade differen  | t weather c   | ondtions te  | sts.        |                           |
| 669      | Facade Sun height simulation in °        | Input         | 4 Bytes      | R,W,C       | 14.007 angle (degree)     |
| Sun      | hight in ° used for façade different we  | ather cond    | tions tests. | l           | ı                         |
| 670      | Facade Reset simulation (1: reset)       | Input         | 1 Bit        | W,C         | 1.001 switch              |
|          | I .                                      | I             | 1            | I           | l .                       |



| Writ      | ing a 1 will reset all simulation values. |               |               |                |                           |
|-----------|-------------------------------------------|---------------|---------------|----------------|---------------------------|
| 671       | Facade Sun angle mode                     | Input         | 1 Bit         | R,W,C          | 1.001 switch              |
|           | simulation (1: On   0: Off)               |               |               |                |                           |
| If ac     | tivated = 1, Sun angle is recieved via C  | Obj. Nr. 668  | & 669.        |                |                           |
| 672       | Facade 1 simulation (1: On   0: Off)      | Input         | 1 Bit         | R,W,C          | 1.001 switch              |
| Set       | this value of the (1 = activate / 0 = dea | ctivate) sin  | nulation for  | façade 1.      |                           |
| 673       | Facade1 block                             | Input         | 1 Bit         | R,W,C          | 1.001 switch              |
| If ac     | rtivated = 1 the façade 1 can't be contr  | olled. (Defa  | ult)          |                |                           |
| 674       | Facade 1 safety (1: On   0: Off)          | Output        | 1 Bit         | R,C,T          | 1.001 switch              |
| Stat      | us of the saftey function that ensure     | the protec    | tion and p    | roper function | oning of the façade 1 in  |
| different | weather conditions (is it depending W     | /ind, Rain, F | rost). (1 = d | on, 0 = off)   |                           |
| 675       | Facade 1 wind extension block             | Input         | 1 Bit         | W,C            | 1.001 switch              |
|           | (1: On   0: Off)                          |               |               |                |                           |
| ls a      | safety feature used to protect the faç    | ade 1 from    | potential of  | damage (pre    | vent further extention of |
| the faça  | de) caused by high winds. (Remain in s    | same positi   | on). (1 = or  | n, 0 = off)    |                           |
| 676       | Facade 1 wind extension block             | Input         | 2 Bytes       | R,W,C, T       | 9.005 speed (m/s)         |
|           | threshold value in m/s                    |               |               |                |                           |
| Refe      | erence point of setting and/or reading    | the Fac.1 W   | /ind thresh   | old value.     |                           |
| 677       | Facade 1 wind extension block             | Input         | 1 Bit         | W,C            | 1.007 step                |
|           | threshold value (1:+   0:-)               |               |               |                |                           |
| Use       | d to increment=1 or decrement=0 the       | Fac.1 Wind    | threshold v   | /alue.         |                           |
| 678       | Facade 1 wind extension block             | Output        | 1 Bit         | R,C,T          | 1.001 switch              |
|           | status (1: On   0: Off)                   |               |               |                |                           |
|           |                                           |               | •             |                |                           |



| 679                                                                                                 | Facade 1 wind alarm (1: On   0:                                          | Input        | 1 Bit       | W,C          | 1.001 switch               |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------|-------------|--------------|----------------------------|--|--|--|--|
|                                                                                                     | Off)                                                                     |              |             |              |                            |  |  |  |  |
| Alarm triggered after the wind speed exceeds the threshold value 1 and can initiate an action. (1 = |                                                                          |              |             |              |                            |  |  |  |  |
| on, 0 = o                                                                                           | on, 0 = off)                                                             |              |             |              |                            |  |  |  |  |
| 680                                                                                                 | 680 Facade 1 wind alarm threshold Input 2 Bytes R,W,C, T 9.005 speed (m/ |              |             |              |                            |  |  |  |  |
|                                                                                                     | value in m/s                                                             |              |             |              |                            |  |  |  |  |
| Reference point of setting and/or reading the Façade 1 Wind alarm threshold value.                  |                                                                          |              |             |              |                            |  |  |  |  |
| 681                                                                                                 | Facade 1 wind alarm threshold                                            | Input        | 1 Bit       | W,C          | 1.007 step                 |  |  |  |  |
|                                                                                                     | value (1:+   0:-)                                                        |              |             |              |                            |  |  |  |  |
| Use                                                                                                 | d to increment=1 or decrement=0 Fa                                       | çade 1 Win   | d alarm thr | eshold valu  | e.                         |  |  |  |  |
| 682                                                                                                 | Facade 1 wind alarm status (1: On                                        | Output       | 1 Bit       | R,C,T        | 1.001 switch               |  |  |  |  |
|                                                                                                     | 0: Off)                                                                  |              |             |              |                            |  |  |  |  |
| Stat                                                                                                | us of the wind alarm for façade 1 (1                                     | = alarm / v  | wind value  | exceeded t   | hreshold value 1, 0 = no   |  |  |  |  |
| alarm). 1                                                                                           | ransmission behaviour can be set wi                                      | thin the par | ameters.C   | an also trig | ger an action. Will be set |  |  |  |  |
| to 1 for s                                                                                          | afety reasons, when no value sent has                                    | s been sent  | for 48 hou  | rs           |                            |  |  |  |  |
| 683                                                                                                 | Facade 1 frost alarm status (1: On                                       | Output       | 1 Bit       | R,W,C,T      | 1.001 switch               |  |  |  |  |
|                                                                                                     | 0: Off)                                                                  |              |             |              |                            |  |  |  |  |
| Stat                                                                                                | us of the frost alarm for façade 1 (1                                    | = alarm / v  | wind value  | exceeded t   | hreshold value 1, 0 = no   |  |  |  |  |
| alarm). T                                                                                           | ransmission behaviour can be set wi                                      | thin the par | ameters.C   | an also trig | ger an action. Will be set |  |  |  |  |
| to 1 for s                                                                                          | afety reasons, when no value sent has                                    | s been sent  | for 48 hou  | rs           |                            |  |  |  |  |
| 684                                                                                                 | Facade1 release/block rain                                               | Input        | 1 Bit       | R,W,C        | 1.001 switch               |  |  |  |  |
|                                                                                                     | automatic                                                                |              |             |              |                            |  |  |  |  |
| Faça                                                                                                | ade 1 rain automation function activat                                   | ion = 1 or B | lock = 0 wh | nen rain con | dition is true. (Default). |  |  |  |  |
| 685                                                                                                 | Facade 1 rain alarm status (1: On                                        | Output       | 1 Bit       | R,C,T        | 1.001 switch               |  |  |  |  |
|                                                                                                     | 0: Off)                                                                  |              |             |              |                            |  |  |  |  |
| Status of the rain alarm (1 = alarm / precipitation detected, 0 = no alarm).                        |                                                                          |              |             |              |                            |  |  |  |  |



| 686      | Facade1 release/block timed              | Input        | 1 Bit       | R,W,C         | 1.001 switch               |
|----------|------------------------------------------|--------------|-------------|---------------|----------------------------|
|          | opening                                  |              |             |               |                            |
| Writ     | te (Active = 1 or deactivated = 0) façad | e 1 timed o  | pening fun  | ction.        |                            |
| 687      | Facade 1 timed opening status (1:        | Output       | 1 Bit       | R,C,T         | 1.001 switch               |
|          | On   0: Off)                             |              |             |               |                            |
| Stat     | tus of façade 1 timed opening function   | ı.(1= Timed  | Opening fu  | inction is ac | ctive). (1 = on, 0 = off)  |
| 688      | Facade1 outside temp.                    | Input        | 1 Bit       | R,W,C         | 1.001 switch               |
|          | Release/block block                      |              |             |               |                            |
| Faç      | ade 1 Blocking function based on whe     | n outdoor t  | emp is belo | ow the thres  | shold value. (Active = 1 o |
| deactiva | ted = 0) .                               |              |             |               |                            |
| 689      | Facade1 outside temp. Block in °C        | Input/       | 2 Bytes     | R,W,C,T       | 9.001 temperature (°C      |
|          |                                          | Output       |             |               |                            |
| It is    | a Reference Point of façade 1 used fo    | r setting or | reading the | e Temperati   | ure block value in °C.     |
| 690      | Facade1 outside temp. Block in °C        | Input        | 1 Bit       | W,C           | 1.007 step                 |
|          | (1:+   0:-)                              |              |             |               |                            |
| Used     | to increment=1 or decrement=0 the e      | xternal Tem  | perature b  | lock thresh   | old value for façade 1.    |
| 691      | Facade1 outside temp. Block              | Output       | 1 Bit       | R,C,T         | 1.001 switch               |
|          | status (1: On   0: Off)                  |              |             |               |                            |
| Stat     | tus of the Façade 1 external Temperat    | ure block fu | nction. (A  | Active = 1 or | inactive = 0).             |
|          |                                          |              | 4           | D.W.O         | 1 001                      |
| 692      | Facade1 release/block timed              | Input        | 1 Bit       | R,W,C         | 1.001 switch               |
| 692      | Facade1 release/block timed closure      | Input        | 1 Bit       | R,W,C         | 1.001 SWITCH               |
|          |                                          | -            |             |               |                            |
|          | closure                                  | -            |             |               |                            |



| 694        | Facade1 release/block night                                                          | Input         | 1 Bit        | R,W,C          | 1.001 switch              |  |  |  |
|------------|--------------------------------------------------------------------------------------|---------------|--------------|----------------|---------------------------|--|--|--|
|            | closure                                                                              |               |              |                |                           |  |  |  |
| Writ       | e (activated = 1 or deactivated = 0) fac                                             | çade 1 night  | t closure fu | ınction. Defa  | ault.                     |  |  |  |
| 695        | Facade 1 night closure status (1:                                                    |               | 1 Bit        | R,C,T          | 1.001 switch              |  |  |  |
|            | On   0: Off)                                                                         |               |              |                |                           |  |  |  |
| Stat       | us of façade 1 timed closure functi                                                  | on.(1= Nigł   | nt Closure   | function is    | active, 0=Night Closure   |  |  |  |
| function   | is deactivate).                                                                      |               |              |                |                           |  |  |  |
| 696        | Facade1 release/block heat                                                           | Input         | 1 Bit        | R,W,C          | 1.001 switch              |  |  |  |
|            | protection                                                                           |               |              |                |                           |  |  |  |
| Writ       | Write (activated = 1 or deactivated = 0) façade 1 Heat Protection function. Default. |               |              |                |                           |  |  |  |
| 697        | Facade 1 heating protection status                                                   |               | 1 Bit        | R,C,T          | 1.001 switch              |  |  |  |
|            | (1: On   0: Off)                                                                     |               |              |                |                           |  |  |  |
| Stat       | us of façade 1 Heat Protection fo                                                    | unction.(1=   | Heat Pro     | tection fun    | ction is active,0= Heat   |  |  |  |
| Protection | on function is deactivate).                                                          |               |              |                |                           |  |  |  |
| 698        | Facade1 release/block                                                                | Input         | 1 Bit        | R,W,C          | 1.001 switch              |  |  |  |
|            | pyranometer                                                                          |               |              |                |                           |  |  |  |
| Pyra       | nometer sensor input for façade 1 is (                                               | (1 = activate | ed or 0 = de | eactivated).   | Default.                  |  |  |  |
| 699        | Facade 1 pyranometer in W/m <sup>2</sup>                                             | Input/        | 2 Bytes      | R,W,C, T       | 9.022 power density       |  |  |  |
|            |                                                                                      | Output        |              |                | (W/m2)                    |  |  |  |
| Refe       | erence value used for setting or read                                                | ing the Faç   | ade 1 Pyr    | anometer (l    | ight intensity) threshold |  |  |  |
| value.     |                                                                                      |               |              |                |                           |  |  |  |
| 700        | Facade 1 pyranometer in W/m <sup>2</sup>                                             | Input         | 1 Bit        | W,C            | 1.007 step                |  |  |  |
|            | (1:+   0:-)                                                                          |               |              |                |                           |  |  |  |
| Use        | d to increment=1 or decrement=0 the                                                  | Façade 1 P    | yranomete    | r (Light inter | nsity) threshold value.   |  |  |  |
| 701        | Facade 1 pyranometer status (1:                                                      | Output        | 1 Bit        | R,C,T          | 1.001 switch              |  |  |  |



|          | On   0: Off)                                                                          |               |              |               |                           |  |  |  |  |
|----------|---------------------------------------------------------------------------------------|---------------|--------------|---------------|---------------------------|--|--|--|--|
| Stat     | tus of the Façade 1 Pyranometer (Ligh                                                 | t intensity). | (1: Light in | tensity valu  | e exceeded threshold).    |  |  |  |  |
| 702      | Facade 1 internal temperature in                                                      | Input         | 2 Bytes      | C,W,T         | 9.001 temperature (°C)    |  |  |  |  |
|          | °C                                                                                    |               |              |               |                           |  |  |  |  |
| Indo     | por input temperature value used for s                                                | etting Façad  | de 1 autom   | ation.        |                           |  |  |  |  |
| 703      | Facade1 release/block inside                                                          | Input         | 1 Bit        | R,W,C         | 1.001 switch              |  |  |  |  |
|          | temp. block                                                                           |               |              |               |                           |  |  |  |  |
| Ten      | Temperature sensor input for façade 1 is (1 = activated or 0 = deactivated). Default. |               |              |               |                           |  |  |  |  |
| 704      | Facade1 inside temp. Block in °C                                                      | Input/        | 2 Bytes      | R,W,C,T       | 9.001 temperature (°C)    |  |  |  |  |
|          |                                                                                       | Output        |              |               |                           |  |  |  |  |
| Thre     | eshold value used to block the façade                                                 | 1 according   | to the inte  | rnal Tempe    | rature in °C.             |  |  |  |  |
| 705      | Facade1 inside temp. Block in °C                                                      | Input         | 1 Bit        | W,C           | 1.007 step                |  |  |  |  |
|          | (1:+   0:-)                                                                           |               |              |               |                           |  |  |  |  |
| Use      | d to increment=1 or decrement=0 the                                                   | Fac.1 intern  | nal Tempera  | ature block   | threshold value.          |  |  |  |  |
| 706      | Facade1 inside temp. Block status                                                     | Output        | 1 Bit        | R,C,T         | 1.001 switch              |  |  |  |  |
|          | (1: On   0: Off)                                                                      |               |              |               |                           |  |  |  |  |
| Stat     | tus of the Façade internal Temperat                                                   | ture block.   | (1 = Block   | king Function | on is active, 0=Blocking  |  |  |  |  |
| Function | n is deactivate).                                                                     |               |              |               |                           |  |  |  |  |
| 707      | Facade 1 internal temperature                                                         | Input         | 1 Bit        | R,W,C         | 1.001 switch              |  |  |  |  |
|          | block release/block via bit object                                                    |               |              |               |                           |  |  |  |  |
| Sen      | d 1 to this obj to activate Façade 1 into                                             | ernal temp l  | blocking fu  | nction.       |                           |  |  |  |  |
| 708      | Facade1 release/block sun auto.                                                       | Input         | 1 Bit        | R,W,C         | 1.001 switch              |  |  |  |  |
| Sen      | d 1 to this obj to activate Façade 1 aut                                              | omation ba    | sed on Sur   | 1 (1 = active | / 0 = inactive). Default. |  |  |  |  |
| 709      | Facade1 Sun auto. Azimuth from                                                        | Input         | 4 Bytes      | R,W,C,T       | 14.007 angle (degree)     |  |  |  |  |
|          | 1                                                                                     |               |              |               | i .                       |  |  |  |  |



| 1.007 step         |
|--------------------|
| 1.007 step         |
| 1.007 step         |
|                    |
|                    |
|                    |
| 007 angle (degree) |
|                    |
|                    |
| 1.007 step         |
|                    |
|                    |
| 007 angle (degree) |
|                    |
|                    |
| 1.007 step         |
|                    |
|                    |
| 007 angle (degree) |
|                    |
|                    |
|                    |
| 1.007 step         |
| 1.007 step         |
| 1.007 step         |
|                    |



|          | (1: On   0: Off)                          |               |             |              |                            |
|----------|-------------------------------------------|---------------|-------------|--------------|----------------------------|
|          |                                           | -             |             |              |                            |
| If th    | e Sun is within the set angle range acc   | cording to fa | açade 1 aut | tomation th  | en the value is 1.         |
| 718      | Facade1 Sun auto. Brightness              | Input         | 2 Bytes     | C,W,T        | 9.004 lux (Lux)            |
|          | measurement in lux                        |               |             |              |                            |
| Brig     | htness measured for Fac.1 in Lux.         |               |             |              |                            |
| 719      | Facade1 Sun auto. Brightness              | Input         | 2 Bytes     | R,W,C,T      | 9.004 lux (Lux)            |
|          | threshold value in lux                    |               |             |              |                            |
| Refe     | erence point of setting and/or reading    | the Sun Aut   | to brightne | ss Fac.1 thr | eshold value.              |
| 720      | Facade1 Sun auto. Brightness              | Input         | 1 Bit       | W,C          | 1.007 step                 |
|          | threshold (1:+   0:-)                     |               |             |              |                            |
| Use      | d to increment=1 or decrement=0 the       | Sun Auto br   | ightness F  | ac.1 thresh  | old value.                 |
| 721      | Facade1 Sun auto. Bright. Short           | Output        | 1 Bit       | R,C,T        | 1.001 switch               |
|          | status (1: On)                            |               |             |              |                            |
| Stat     | tus is high when Brightness is above      | the Sun a     | uto. Thresh | old, longer  | than short delay setting   |
| value.   |                                           |               |             |              |                            |
| 722      | Facade1 Sun auto. Bright. Long            | Output        | 1 Bit       | R,C,T        | 1.001 switch               |
|          | status (1: On)                            |               |             |              |                            |
| Stat     | tus is high when Brightness is above      | the Sun a     | uto. Thresh | nold, longer | than Long delay setting    |
| value.   |                                           |               |             |              |                            |
| 723      | Facade 1 extension delay in min.          | Input/        | 2 Bytes     | R,W,C,T      | 7.006 time (min)           |
|          |                                           | Output        |             |              |                            |
| Valu     | ue used for setting extention time in M   | inutes in wh  | nich when b | orightness v | alue is over thershold for |
| more the | en this time it activates the façade 1 sı | un protectio  | n.          |              |                            |
| 724      | Facade 1 extension delay in min.          | Input         | 1 Bit       | W,C          | 1.007 step                 |
|          | (1:+   0:-)                               |               |             |              |                            |
|          | 1                                         | I             | I.          | I.           | l .                        |



| Use     | ed to increment=1 or decrement=0 the                                                 | Fac.1 exten  | sion delay   | value.        |                          |
|---------|--------------------------------------------------------------------------------------|--------------|--------------|---------------|--------------------------|
| 725     | Facade 1 short delay in seconds                                                      | Input/       | 2 Bytes      | R,W,C,T       | 7.005 time(s)            |
|         |                                                                                      | Output       |              |               |                          |
| Ref     | erence point of setting extention tin                                                | ne in Seco   | nds in wh    | ich when b    | orightness value is over |
| hershol | d for more then this time it activated th                                            | ne façade 1  | sun protec   | tion.         |                          |
| 726     | Facade 1 short delay in seconds                                                      | Input        | 1 Bit        | w,c           | 1.007 step               |
|         | (1:+   0:-)                                                                          |              |              |               |                          |
| Use     | ed to increment=1 or decrement=0 the                                                 | Fac.1 exten  | sion delay   | value.        |                          |
| 727     | Facade 1 retraction delay in min.                                                    | Input/       | 2 Bytes      | R,W,C,T       | 7.006 time (min)         |
|         |                                                                                      | Output       |              |               |                          |
|         | ue used for setting retraction time in So<br>then this time it deactivated the façac |              |              | brightness    | value is below thershold |
| 728     | Facade 1 retraction delay in min.                                                    | Input        | 1 Bit        | W,C           | 1.007 step               |
|         | (1:+   0:-)                                                                          |              |              |               |                          |
| Use     | ed to increment=1 or decrement=0 the                                                 | Fac.1 retrac | tion delay   | value.        |                          |
| 729     | Facade 1 movement position                                                           | Output       | 1 Bit        | R,C,T         | 5.001 percentage         |
|         |                                                                                      |              |              |               | (0100%)                  |
| Sen     | d the Movment position on the bus to                                                 | control the  | actuators o  | of the façade | e 1.                     |
| 730     | Facade1 blind position                                                               | Output       | 1 Bit        | R,C,T         | 5.001 percentage         |
|         |                                                                                      |              |              |               | (0100%)                  |
| Sen     | d the Slats position on the bus to cont                                              | rol the actu | ators of the | e façade 1.   |                          |
| 731     | Facade 1 channel status output (1:                                                   | Input        | 1 Bit        | R,W,C         | 1.001 switch             |
|         | On   0: Off)                                                                         |              |              |               |                          |
| Indi    | icates if Fac.1 channel is activated or n                                            | ot.          |              |               |                          |
| 732     | Facade 1 channel state text                                                          | Output       | 14           | R,C,T         | 16.000 Character         |
|         |                                                                                      |              |              |               |                          |



| Tex      | t of the condition of façade 1 Saftey, W  | Vind extenti    | on block,   | ).          |                          |
|----------|-------------------------------------------|-----------------|-------------|-------------|--------------------------|
| 733      | Facade 1 channel status bit text          | Output          | 14          | R,C,T       | 16.000 Character         |
|          |                                           |                 | Bytes       |             | String (ASCII)           |
| Tex      | t output about the reason behind the c    | urrent cond     | ition.(Wind | alarm, Rain | alarm,).                 |
| 734      | Facade 1 channel status bit state         | Output          | 1 Bit       | R,C,T       | 1.001 switch             |
|          |                                           |                 |             |             |                          |
| Stat     | us of the Status bit state (1 = True or r | not = 0 ).      |             |             |                          |
| 735      | Facade 1 channel delay                    | Output          | 2 Bytes     | R,C,T       | 7.005 time(s)            |
| Disp     | playing the delay time for the selected   | d status-bit.   | Some aut    | omation fu  | nctions have delay times |
| that mus | st first be run through before the status | s-bit is (re-)s | set.        |             |                          |
| 736      | Facade 1 channel status bit               | Input           | 1 Bit       | W,C         | 1.007 step               |
|          | selection (1:+   0:-)                     |                 |             |             |                          |
|          | esta the atotac of the automatic function |                 | 1           |             | \                        |

Selects the states of the automatic functions (channel status bit information) for façade 1, that are then output in objects 732 and 733. 1 = next status info, 0 = previous status info. The text for the selected information is output in object 732 and the condition (true or false) is output in object 733.

Table 5.25 Communication object of "Facades"



# 5.26 Communication object of "Computer"

|                | Number | Name                          | Object Function Description | Group Address | Length   | C | R | W   | T  | U | Data Type                | Priority |
|----------------|--------|-------------------------------|-----------------------------|---------------|----------|---|---|-----|----|---|--------------------------|----------|
| m <b></b>      | 1530   | Computer 1: Input I1          | Input                       |               | 2 bytes  | C | R | W   | T  | ė | pulses difference        | Low      |
| m2             | 1531   | Computer 1: Input I2          | Input                       |               | 2 bytes  | C | R | W   | T  | 2 | pulses difference        | Low      |
| m2             | 1532   | Computer 1: Input I3          | Input                       |               | 2 bytes  | C | R | W   | T  | ÷ | pulses difference        | Low      |
| m <del>*</del> | 1533   | Computer 1: Output O1         | Output                      |               | 1 bit    | C | R | _   | T  | _ | switch                   | Low      |
| m#             | 1534   | Computer 1: Output O2         | Output                      |               | 1 bit    | C | R | Œ . | T  | ž | switch                   | Low      |
| m+             | 1535   | Computer 1: Condition text    | Output                      |               | 14 bytes | C | R | _   | T  | _ | Character String (ASCII) | Low      |
| m#             | 1536   | Computer 1: Monitoring status | Output                      |               | 1 bit    | C | R | æ   | T  | ÷ | switch                   | Low      |
| <b>#</b>       | 1537   | Computer 1: Block (1: block)  | Input                       |               | 1 bit    | C | 2 | W   | 20 | 2 | switch                   | Low      |
|                |        |                               |                             |               |          |   |   |     |    |   |                          |          |

Fig.5.26 Communication object of "Computer"

| NO.        | Name                             | Function      | Types       | Property      | DPT                               |
|------------|----------------------------------|---------------|-------------|---------------|-----------------------------------|
| 1530//     | Calculator 1: Input I1/2/3       | Input         | 4 Bytes     | R,W,C,T       | Depending on setting              |
| 1532       |                                  |               |             |               |                                   |
| First I    | nput for Computer 1/2/3 (bit     | /byte/perce   | ntage/deg   | ree/).        |                                   |
| 1533/15    | Calculator 1: Output O1/2        | Output        | 4 Bytes     | R,C,T         | Depending on setting              |
| 34         |                                  |               |             |               |                                   |
| First (    | Output for Computer 1 (bit/by    | rte/percenta  | age/degree  | 2/).          |                                   |
| 1535       | Calculator 1: Condition          | Output        | 14          | R,C,T         | 16.000 Character String           |
|            | text                             |               | Bytes       |               | (ASCII)                           |
| Text       | output for the condition: met(   | True)/not m   | net(False). |               |                                   |
| 1536       | Calculator 1: Monitoring         | Output        | 1 Bit       | R,C,T         | 1.001 switch                      |
|            | status                           |               |             |               |                                   |
| Indica     | ates the current condition of    | the monitor   | red inputs, | If no value r | ecieved for the inputs in the set |
| time range | e, This status is True = 1 indic | cating an iss | sue. Defaul | t             |                                   |
| 1537       | Calculator 1: Block (1:          | Input         | 1 Bit       | w,c           | 1.001 switch                      |
|            | Block)                           |               |             |               |                                   |
| Used       | to receive a binary state bloc   | k = 1 or allo | w = 0 the s | switching of  | an output Obj.No. 1533 & 1534.    |
|            |                                  |               |             |               |                                   |

Table 5.26 Communication object of "Computer"



## 5.27 Communication object of "Week time switch"

|            | Number | Name                                          | Object Function | Description | Group Address | Length  | C | R | W | / T | U | Data Type             | Priority |
|------------|--------|-----------------------------------------------|-----------------|-------------|---------------|---------|---|---|---|-----|---|-----------------------|----------|
| <b>#</b>   | 1600   | Weekly time switch period 1: Switch-on time   | Input           |             |               | 3 bytes | C | R | W | T   | 2 | time of day           | Low      |
| <b>■</b> → | 1601   | Weekly time switch period 1: Switch-off time  | Input           |             |               | 3 bytes | C | R | W | T   | - | time of day           | Low      |
| <b>■</b> → | 1602   | Weekly time switch period 1: Switching output | Output          |             |               | 1 bit   | C | R | - | Т   | = | switch                | Low      |
| <b>■</b> → | 1603   | Weekly time switch period 1: 8-bit output     | Output          |             |               | 1 byte  | C | R | - | Т   | - | counter pulses (0255) | Low      |

Fig. 5.27 Communication object of "Week time switch"

|        | •                                |               | ,           |            |                                   |
|--------|----------------------------------|---------------|-------------|------------|-----------------------------------|
| No.    | Name                             | Function      | Types       | Property   | DPT                               |
| 1600   | Weekly timer period 1:           | Input         | R,W,C,T     | 3 Bytes    | 10.001 time of day                |
|        | Switch-on time                   |               |             |            |                                   |
| Se     | ets the specific time (hours and | minutes) a    | t which the | WTP 1 sho  | ould start for selected days. WTP |
| (Weekl | ly timer period).                |               |             |            |                                   |
| 1601   | Weekly timer period 1: Off       | Input         | R,W,C,T     | 3 Bytes    | 10.001 time of day                |
|        | time                             |               |             |            |                                   |
| Se     | ets the specific time (hours and | minutes) at   | which the \ | WTP 1 shou | ıld end for selected days.        |
| 1602   | Weekly timer period 1:           | Output        | R,C,T       | 1 Bit      | 1.001 switch                      |
|        | Switching output                 |               |             |            |                                   |
| Va     | alue is High(1) when WTP 1 is a  | ctive & Value | e is Low(0) | when WTP   | 1 is inactive .                   |
| 1603   | Weekly timer period 1: 8-bit     | Output        | R,C,T       | 1 Byte     | 5.010 counter pulses (0255)       |
|        | output                           |               |             |            |                                   |

According to WTP 1 Switching output, two preset values possible (0-255). Value If WTP 1 is active & Value If WTP 1 is Not-active.

Table 5.27 Communication object of "Week time switch"



## 5.28 Communication object of "Calendar time switch"

|                | Number | Name                                               | Object Function | Description | Group Address | Length  | C | R  | W   | T | U Data Type           | Priority |
|----------------|--------|----------------------------------------------------|-----------------|-------------|---------------|---------|---|----|-----|---|-----------------------|----------|
| m2             | 1720   | Calendar time switch period 1: Start date          | Input           |             |               | 3 bytes | C | R. | W   | - | date                  | Low      |
| <b>#</b>       | 1721   | Calendar time switch period 1: End date            | Input           |             |               | 3 bytes | C | R  | W   | - | date                  | Low      |
| m2             | 1722   | Cal. time switch period 1 seq. 1: Switch-on time   | Input           |             |               | 3 bytes | C | R  | W   | - | time of day           | Low      |
| <b>#</b>       | 1723   | Cal. time switch period 1 seq. 1: Switch-off time  | Input           |             |               | 3 bytes | C | R  | W   |   | time of day           | Low      |
| m <del>2</del> | 1724   | Cal. time switch period 1 seq. 1: Switching output | Output          |             |               | 1 bit   | C | R. | -   | - | switch                | Low      |
| <b>#</b> 2     | 1725   | Calendar time switch period 1 seq. 1; 8-bit output | Output          |             |               | 1 byte  | C | R  | - 9 | - | counter pulses (0255) | Low      |

Fig.5.28 Communication object of "Calendar time switch"

|         |                                    |               | object of t  |               |                                    |
|---------|------------------------------------|---------------|--------------|---------------|------------------------------------|
| NO.     | Name                               | Function      | Types        | Property      | DPT                                |
| 1720    | Calendar timer period 1:           | Input         | 3 Bytes      | R,W,C,T       | 11.001 date                        |
|         | Start date                         |               |              |               |                                    |
| TI      | he starting Month and Day of th    | e CTP 1 . CT  | P (Calenda   | ar timer peri | od)                                |
| 1721    | Calendar timer period 1: End       | Input         | 3 Bytes      | R,W,C,T       | 11.001 date                        |
|         | date                               |               |              |               |                                    |
| TI      | he ending Month and Day of the     | CTP 1.        |              |               |                                    |
| 1722    | Calendar timer period 1            | Input         | 3 Bytes      | R,W,C,T       | 10.001 time of day                 |
|         | sequence 1: Switch-on time         |               |              |               |                                    |
| C.      | TP 1 Seq 1 Switch On Time: H       | ours: 0 to 23 | 3 / Minutes  | : 0 to 59.    |                                    |
| 1723    | Calendar timer period 1            | Input         | 3 Bytes      | R,W,C,T       | 10.001 time of day                 |
|         | sequence 1: Off time               |               |              |               |                                    |
| C.      | TP 1 Seq 1 Switch Off Time : I     | Hours: 0 to 2 | 3 / Minute   | s: 0 to 59.   |                                    |
| 1724    | Calendar timer period 1            | Output        | 1 Bit        | R,C,T         | 1.001 switch                       |
|         | sequence 1: Switching              |               |              |               |                                    |
|         | output                             |               |              |               |                                    |
| If      | the CTP 1 Seq 1 is active an       | d the curren  | t time falls | s within the  | defined time range, the output is  |
| high (1 | 1); If the period is not active or | the current t | ime is out   | side the def  | ined time range, the output is low |
| (0).    |                                    |               |              |               |                                    |
| 1725    | Calendar timer period 1            | Output        | 1 Byte       | R,C,T         | 5.010 counter pulses (0255)        |



|        | sequence 1: 8-bit outp     | ıt   |               |            |              |                                  |
|--------|----------------------------|------|---------------|------------|--------------|----------------------------------|
| Ad     | ccording to CTP 1 Seq      | 1 Sv | vitching out  | put, two p | reset values | s in the parameters are possible |
| (0-255 | ). Value If CTP 1 Seq 1 is | acti | ve & Value If | CTP1 S     | eq 1 is Not- | active.                          |

Table 5.28 Communication object of "Calendar time switch"



## 5.29 Communication object of "Logic"

|           | Number | * Name                              | Object Function | Description | Group Address | Length | C | R | W   | T   | U               | Data Type             | Priority |
|-----------|--------|-------------------------------------|-----------------|-------------|---------------|--------|---|---|-----|-----|-----------------|-----------------------|----------|
| <b> </b>  | 1780   | Logic input 1                       | Input           |             |               | 1 bit  | C | - | W   | - / | 4               | boolean               | Low      |
| <b>  </b> | 1781   | Logic input 2                       | Input           |             |               | 1 bit  | C | - | W   | -   | -               | boolean               | Low      |
| <b>#</b>  | 1782   | Logic input 3                       | Input           |             |               | 1 bit  | C | - | W   | - / | 4               | boolean               | Low      |
| <b>  </b> | 1783   | Logic input 4                       | Input           |             |               | 1 bit  | C | - | W   | - 1 | -               | boolean               | Low      |
| ==        | 1784   | Logic input 5                       | Input           |             |               | 1 bit  | C | - | W   | - 1 | -               | boolean               | Low      |
| <b>  </b> | 1785   | Logic input 6                       | Input           |             |               | 1 bit  | C | - | W   | - 1 | -               | boolean               | Low      |
| ==        | 1786   | Logic input 7                       | Input           |             |               | 1 bit  | C | - | W   | - 1 | -               | boolean               | Low      |
| <b>  </b> | 1787   | Logic input 8                       | Input           |             |               | 1 bit  | C | - | W   | - 1 | -               | boolean               | Low      |
| ==        | 1788   | Logic input 9                       | Input           |             |               | 1 bit  | C | - | W   |     | 4               | boolean               | Low      |
| <b>  </b> | 1789   | Logic input 10                      | Input           |             |               | 1 bit  | C | - | W   | - 1 | -               | boolean               | Low      |
| ==        | 1790   | Logic input 11                      | Input           |             |               | 1 bit  | C | - | W   | - 7 | 4               | boolean               | Low      |
| <b> </b>  | 1791   | Logic input 12                      | Input           |             |               | 1 bit  | C | - | W   | -   | -               | boolean               | Low      |
| <b>=</b>  | 1792   | Logic input 13                      | Input           |             |               | 1 bit  | C | - | W   | - / | -               | boolean               | Low      |
| ==        | 1793   | Logic input 14                      | Input           |             |               | 1 bit  | C | - | W   | - 3 | -               | boolean               | Low      |
| <b>  </b> | 1794   | Logic input 15                      | Input           |             |               | 1 bit  | C | _ | W   | - / | 4               | boolean               | Low      |
| <b> </b>  | 1795   | Logic input 16                      | Input           |             |               | 1 bit  | C | - | W   | - 1 | <b>3</b> 0      | boolean               | Low      |
| <b> </b>  | 1800   | AND logic 1: 1 bit switching output | Output          |             |               | 1 bit  | C | R | -   | Т   | u               | boolean               | Low      |
| <b>*</b>  | 1801   | AND logic 1: 8 bit output A         | Output          |             |               | 1 byte | C | R | 920 | Т   | 620             | counter pulses (0255) | Low      |
| 17        | 1802   | AND logic 1: 8 bit output B         | Output          |             |               | 1 byte | C | R |     | T   |                 | counter pulses (0255) | Low      |
| <b> </b>  | 1803   | AND logic 1: Block                  | Input           |             |               | 1 bit  | C | 2 | W   | 2   | (3 <b>1</b> (8) | switch                | Low      |
| *         | 1832   | OR logic 1: 1 bit switching output  | Output          |             |               | 1 bit  | C | R | 128 | T   |                 | boolean               | Low      |
| <b> </b>  | 1833   | OR logic 1: 8 bit output A          | Output          |             |               | 1 byte | C | R | -   | Т   | -               | counter pulses (0255) | Low      |
| 1         | 1834   | OR logic 1: 8 bit output B          | Output          |             |               | 1 byte | C | R | 10  | Т   | 5               | counter pulses (0255) | Low      |
| 7         | 1835   | OR logic 1: Block                   | Input           |             |               | 1 bit  | C | - | W   | _   | -               | switch                | Low      |

Fig.5.29 Communication object of "Logic"

| No.         | Name                    | Function      | Types       | Property | DPT                      |
|-------------|-------------------------|---------------|-------------|----------|--------------------------|
| 1780//1795  | Logic input 1//16       | Input         | W,C         | 1 Bit    | 1.002 boolean            |
|             |                         |               |             |          |                          |
| Logical inp | ut 1//16 of type bit to | be used in    | logical fui | ntions.  |                          |
| 1800        | AND logic 1: 1-bit      | Output        | R,C,T       | 1 Bit    | 1.002 boolean            |
|             | switching output        |               |             |          |                          |
| Output of A | and Logic 1 according t | o 4 availabl  | e inputs.   |          |                          |
| 1801        | AND logic 1: 8-bit      | Output        | R,C,T       | 1 Byte   | 5.001 percentage (0100%) |
|             | output A                |               |             |          |                          |
| Output A o  | f And Logic 1 (1Byte Va | lue set in th | ie parame   | ters)    |                          |



| 1802        | AND logic 1: 8-bit      | Output        | R,C,T       | 1 Byte     | 5.001 percentage (0100%) |
|-------------|-------------------------|---------------|-------------|------------|--------------------------|
|             | output B                |               |             |            |                          |
| Output B o  | f And Logic 1 (1Byte Va | lue set in th | ne parame   | ters)      |                          |
| 1803        | AND logic 1: Block      | Input         | W,C         | 1 Bit      | 1.001 switch             |
| Used to blo | ck the output of And L  | ogic 1 (1 = l | olock & 0 = | released). | Default                  |
| 1832        | OR logic 1: 1-bit       | Output        | R,C,T       | 1 Bit      | 1.002 boolean            |
|             | switching output        |               |             |            |                          |
| Output of 0 | OR Logic 1 according to | 4 available   | inputs.     |            |                          |
| 1833        | OR logic 1: 8-bit       | Output        | R,C,T       | 1 Byte     | 5.001 percentage (0100%  |
|             | output A                |               |             |            |                          |
| Output A o  | f OR Logic 1 (1Byte Val | ue set in the | e paramet   | ers)       |                          |
| 1834        | OR logic 1: 8-bit       | Output        | R,C,T       | 1 Byte     | 5.001 percentage (0100%) |
|             | output B                |               |             |            |                          |
|             | f OR Logic 1 (1Byte Val | ue set in the | e paramet   | ers)       |                          |
| Output A o  |                         |               |             |            |                          |

Table 5.29 Communication object of "Logic"